Publications by Year: 2011

2011
Matthew M. Ford, Andrea M. Fretwell, Allison M.J. Anacker, John C. Crabbe, Gregory P. Mark, and Deborah A. Finn. “The influence of selection for ethanol withdrawal severity on traits associated with ethanol self-administration and reinforcement.” Alcoholism, Clinical and Experimental Research, 35, 2, Pp. 326–337. Abstract
BACKGROUND: Several meta-analyses indicate that there is an inverse genetic correlation between ethanol preference drinking and ethanol withdrawal severity, but limited work has characterized ethanol consumption in 1 genetic animal model, the Withdrawal Seizure-Prone (WSP) and-Resistant (WSR) mouse lines selected for severe or mild ethanol withdrawal, respectively. METHODS: We determined whether line differences existed in: (i) operant self-administration of ethanol during sucrose fading and under different schedules of reinforcement, followed by extinction and reinstatement of responding with conditioned cues and (ii) home cage drinking of sweetened ethanol and the development of an alcohol deprivation effect (ADE). RESULTS: Withdrawal Seizure-Prone-1 mice consumed more ethanol than WSR-1 mice under a fixed ratio (FR)-4 schedule as ethanol was faded into the sucrose solution, but this line difference dissipated as the sucrose was faded out to yield an unadulterated 10% v/v ethanol solution. In contrast, WSR-1 mice consumed more ethanol than WSP-1 mice when a schedule was imposed that procedurally separated appetitive and consummatory behaviors. After both lines achieved the extinction criterion, reinstatement was serially evaluated following oral ethanol priming, light cue presentation, and a combination of the 2 cues. The light cue produced maximal reinstatement of responding in WSP-1 mice, whereas the combined cue was required to produce maximal reinstatement of responding in WSR-1 mice. There was no line difference in the home cage consumption of a sweetened ethanol solution over a period of 1 month. Following a 2-week period of abstinence, neither line developed an ADE. CONCLUSIONS: Although some line differences in ethanol self-administration and reinstatement were identified between WSP-1 and WSR-1 mice, the absence of consistent divergence suggests that the genes underlying these behaviors do not reliably overlap with those that govern withdrawal severity.
Pamela Metten, Lauren Lyon Brown, and John C. Crabbe. “Limited Access Ethanol Drinking in the Dark in Adolescent and Adult Mice.” Pharmacology, biochemistry, and behavior, 98, 2, Pp. 279–285. Publisher's Version Abstract
Adult risk of alcohol dependence increases the younger one first engages in intoxicating consumption. Adolescent mice drink more ethanol than do adults on a g/kg basis, an increase sometimes persisting into adulthood, and this is genotype-dependent. Most studies have used 24-hr two-bottle preference, with choice between ethanol and water. We studied the developmental onset of binge drinking using limited access ethanol drinking in the dark (DID) in male and female mice. To establish age dependence in DID magnitude, we tested HS/Npt mice of 6 ages for DID for two weeks, and, when 9 weeks old, retested them for two weeks vs naïve adult controls. Age groups drank equivalently in their first week; thus, adolescent HS/Npt mice do not show greater DID than adults. Six week old mice drank more ethanol during their second week relative to their other weeks. Ethanol DID during early adolescence (4 weeks) led to increased drinking in adulthood, as did initial DID exposure at 8 weeks. High Drinking in the Dark-1 (HDID-1) mice (4, 6, 9 weeks old), selectively bred for high blood ethanol after DID, were tested for 9 weeks. Mice beginning at 4 weeks generally drank more ethanol than those of other age groups. Comparison at the same ages showed that 9 week olds initiated at 4 weeks drank more ethanol than did naïve 9 week olds, but all three groups of age-matched mice drank equivalent amounts once 10 weeks and older. The DID test is thus sensitive to developmental age. DID intakes by young adolescent HDID-1 mice were greater than by older mice, like studies with two-bottle preference. Early DID led to increased drinking as adults only in HS/Npt mice. HDID-1 mice provide a useful animal model for exploring whether DID and continuous access preference drinking have parallel consequences when initiated in adolescence.
Amy W. Lasek, Francesco Giorgetti, Karen H. Berger, Stacy Tayor, and Ulrike Heberlein. “Lmo genes regulate behavioral responses to ethanol in Drosophila melanogaster and the mouse.” Alcoholism, Clinical and Experimental Research, 35, 9, Pp. 1600–1606. Abstract
BACKGROUND: Previous work from our laboratory demonstrated a role for the Drosophila Lim-only (dLmo) gene in regulating behavioral responses to cocaine. Herein, we examined whether dLmo influences the flies' sensitivity to ethanol's sedating effects. We also investigated whether 1 of the mammalian homologs of dLmo, Lmo3, is involved in behavioral responses to ethanol in mice. METHODS: To examine dLmo function in ethanol-induced sedation, mutant flies with reduced or increased dLmo expression were tested using the loss of righting (LOR) assay. To determine whether mouse Lmo3 regulates behavioral responses to ethanol, we generated transgenic mice expressing a short-hairpin RNA targeting Lmo3 for RNA interference-mediated knockdown by lentiviral infection of single cell embryos. Adult founder mice, expressing varying amounts of Lmo3 in the brain, were tested using ethanol loss-of-righting-reflex (LORR) and 2-bottle choice ethanol consumption assays. RESULTS: We found that in flies, reduced dLmo activity increased sensitivity to ethanol-induced sedation, whereas increased expression of dLmo led to increased resistance to ethanol-induced sedation. In mice, reduced levels of Lmo3 were correlated with increased sedation time in the LORR test and decreased ethanol consumption in the 2-bottle choice protocol. CONCLUSIONS: These data describe a novel and conserved role for Lmo genes in flies and mice in behavioral responses to ethanol. These studies also demonstrate the feasibility of rapidly translating findings from invertebrate systems to mammalian models of alcohol abuse by combining RNA interference in transgenic mice and behavioral testing.
Y. A. Blednov, C. M. Borghese, M. L. McCracken, J. M. Benavidez, C. R. Geil, E. Osterndorff-Kahanek, D. F. Werner, S. Iyer, A. Swihart, N. L. Harrison, G. E. Homanics, and R. A. Harris. “Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors.” The Journal of Pharmacology and Experimental Therapeutics, 336, 1, Pp. 145–154. Abstract
GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.
Richard L. Bell, Zachary A. Rodd, Rebecca J. Smith, Jamie E. Toalston, Kelle M. Franklin, and William J. McBride. “Modeling binge-like ethanol drinking by peri-adolescent and adult P rats.” Pharmacology, Biochemistry, and Behavior, 100, 1, Pp. 90–97. Abstract
Alcohol binge-drinking, especially among adolescents and young adults, is a serious public health concern. The present study examined ethanol binge-like drinking by peri-adolescent [postnatal days (PNDs 30-72)] and adult (PNDs 90-132) alcohol-preferring (P) rats with a drinking-in-the-dark-multiple-scheduled-access (DID-MSA) procedure used by our laboratory. Male and female P rats were provided concurrent access to 15% and 30% ethanol for three 1-h sessions across the dark cycle 5 days/week. For the 1st week, adolescent and adult female P rats consumed 3.4 and 1.6g/kg of ethanol, respectively, during the 1st hour of access, whereas for male rats the values were 3.5 and 1.1g/kg of ethanol, respectively. Adult intakes increased to \textasciitilde2.0 g/kg/h and adolescent intakes decreased to \textasciitilde2.5 g/kg/h across the 6 weeks of ethanol access. The daily ethanol intake of adult DID-MSA rats approximated or modestly exceeded that seen in continuous access (CA) rats or the selection criterion for P rats (≥5 g/kg/day). However, in general, the daily ethanol intake of DID-MSA peri-adolescent rats significantly exceeded that of their CA counterparts. BELs were assessed at 15-min intervals across the 3rd hour of access during the 4th week. Ethanol intake was 1.7 g/kg vs. 2.7 g/kg and BELs were 57 mg% vs. 100mg% at 15- and 60-min, respectively. Intoxication induced by DID-MSA in female P rats was assessed during the 1st vs. 4th week of ethanol access. Level of impairment did not differ between the 2 weeks (106 vs. 97 s latency to fall, 120 s criterion) and was significant (vs. naïve controls) only during the 4th week. Overall, these findings support the use of the DID-MSA procedure in rats, and underscore the presence of age- and sex-dependent effects mediating ethanol binge-like drinking in P rats.
Megan K. Mulligan, Justin S. Rhodes, John C. Crabbe, R. Dayne Mayfield, R. Adron Harris, and Igor Ponomarev. “Molecular profiles of drinking alcohol to intoxication in C57BL/6J mice.” Alcoholism, Clinical and Experimental Research, 35, 4, Pp. 659–670. Abstract
BACKGROUND: Alcohol addiction develops through a series of stages, and mechanistic studies are needed to understand the transition from initial drug use to sustained controlled alcohol consumption followed by abuse and physical dependence. The focus of this study was to examine the effects of voluntary alcohol consumption on brain gene expression profiles using a mouse model of binge drinking. The main goal was to identify alcohol-responsive genes and functional categories after a single episode of drinking to intoxication. METHODS: We used a modification of a "Drinking In the Dark" (DID) procedure (Rhodes et al., 2005) that allows mice to experience physiologically relevant amounts of alcohol in a non-stressful environment and also allows for detection of alcohol-sensitive molecular changes in a dose-dependent manner. C57BL/6J male mice were exposed to either 20% ethanol solution or water (single bottle) starting 3 hours after lights off for 4 hours and brains were harvested immediately after the drinking session. cDNA microarrays were used to assess the effects of voluntary drinking on global gene expression in 6 brain regions. We employed three statistical approaches to analyze microarray data. RESULTS: A commonly used approach that applies a strict statistical threshold identified the eight top statistically significant genes whose expression was significantly correlated with blood ethanol concentration (BEC) in one of the brain regions. We then used a systems network approach to examine brain region-specific transcriptomes and identify modules of co-expressed (correlated) genes. In each brain region, we identified alcohol-responsive modules, i.e., modules significantly enriched for genes whose expression was correlated with BEC. A functional over-representation analysis was then applied to examine the organizing principles of alcohol-responsive modules. Genes were clustered into modules according to their roles in different physiological processes, functional groups, and cell types, including blood circulation, signal transduction, cell-cell communication, and striatal neurons. Finally, a meta-analysis across all brain regions suggested a global role of increasing alcohol dose in coordination of brain blood circulation and reaction of astrocytes. CONCLUSIONS: This study showed that acute drinking resulted in small but consistent changes in brain gene expression which occurred in a dose-dependent manner. We identified both general and region-specific changes, some of which represent adaptive changes in response to increasing alcohol dose, which may play a role in alcohol-related behaviours, such as tolerance and consumption. Our systems approach allowed us to estimate the functional values of individual genes in the context of their genetic networks and formulate new refined hypotheses. An integrative analysis including other alcohol studies suggested several top candidates for functional validation, including Mt2, Gstm1, Scn4b, Prkcz, and Park7.
Giorgio Gorini, Richard L. Bell, and R. Dayne Mayfield. “Molecular targets of alcohol action: Translational research for pharmacotherapy development and screening.” Progress in Molecular Biology and Translational Science, 98, Pp. 293–347. Abstract
Alcohol abuse and dependence are multifaceted disorders with neurobiological, psychological, and environmental components. Research on other complex neuropsychiatric diseases suggests that genetically influenced intermediate characteristics affect the risk for heavy alcohol consumption and its consequences. Diverse therapeutic interventions can be developed through identification of reliable biomarkers for this disorder and new pharmacological targets for its treatment. Advances in the fields of genomics and proteomics offer a number of possible targets for the development of new therapeutic approaches. This brain-focused review highlights studies identifying neurobiological systems associated with these targets and possible pharmacotherapies, summarizing evidence from clinically relevant animal and human studies, as well as sketching improvements and challenges facing the fields of proteomics and genomics. Concluding thoughts on using results from these profiling technologies for medication development are also presented.
Therese A. Kosten. “Pharmacologically targeting the P2rx4 gene on maintenance and reinstatement of alcohol self-administration in rats.” Pharmacology, Biochemistry, and Behavior, 98, 4, Pp. 533–538. Abstract
Genetic studies indicate that alcohol consumption associates with expression of the P2rx4 gene, a gene that codes for the P2X(4) receptor. This receptor is a subtype in the purinergic system of ligand-gated ion channels that when activated exerts excitatory effects in CNS. P2X(4) function is inhibited by alcohol and P2X(4) receptors are modulated positively by the antiparasitic agent, ivermectin. Two experiments were performed to test the ability of ivermectin to alter the behavioral effects of alcohol in rats. After alcohol exposure was achieved via the "drinking in the dark" procedure, separate groups of Sprague-Dawley rats were trained to lever press for either alcohol (10% ethanol/2% sucrose) or sucrose (3%) solutions in operant chambers. Rats were tested for maintenance of operant self-administration under a progressive ratio condition (Experiment 1) and for reinstatement of extinguished responding induced by solution presentation (Experiment 2) after ivermectin (0; 1-10mg/kg; IP) administration. Ivermectin decreased the amount of work that the animal performed to obtain reinforcers in the maintenance study, particularly in the group reinforced with alcohol, and tended to decrease reinstated lever press responding. Conditioned approach behavior (head entries) was significantly reduced by ivermectin in both experiments. Reduction in motor activity was seen during the longer maintenance sessions but not in the shorter reinstatement sessions. Results suggest some support for ivermectin-like drugs as potential treatment agents for alcohol dependence. Caution is warranted due to modest specificity on behavior reinforced by alcohol, some reduction in general activity levels, and the lack of dose-response effects.
Allison M.J. Anacker, Jennifer M. Loftis, Simranjit Kaur, and Andrey E. Ryabinin. “Prairie voles as a novel model of socially facilitated excessive drinking.” Addiction Biology, 16, 1, Pp. 92–107. Abstract
Social relationships strongly affect alcohol drinking in humans. Traditional laboratory rodents do not exhibit social affiliations with specific peers, and cannot adequately model how such relationships impact drinking. The prairie vole is a socially monogamous rodent used to study social bonds. The present study tested the prairie vole as a potential model for the effects of social affiliations on alcohol drinking. Same-sex adult sibling prairie voles were paired for five days, and then either separated into individual cages, or housed in pairs. Starting at the time of separation, the voles received unlimited access to alcohol in a two-bottle choice test versus water. Pair-housed siblings exhibited higher preference for alcohol, but not saccharin, than singly housed voles. There was a significant correlation between the amount of alcohol consumed by each member of a pair when they were housed together (r = 0.79), but not when housed apart (r = 0.20). Following automated analysis of circadian patterns of fluid consumption indicating peak fluid intake before and after the dark phase, a limited access two-hour two-bottle choice procedure was established. Drinking in this procedure resulted in physiologically relevant blood ethanol concentrations and increased Fos immunoreactivity in perioculomotor urocortin containing neurons (but not in nucleus accumbens or central nucleus of the amygdala). The high ethanol preference and sensitivity to social manipulation indicate that prairie voles can serve to model social influences on excessive drinking.
John C. Crabbe, R. Adron Harris, and George F. Koob. “Preclinical studies of alcohol binge drinking.” Annals of the New York Academy of Sciences, 1216, Pp. 24–40. Abstract
Binge drinking is prevalent and has serious biomedical consequences. In children, adolescents, and young adults, it is a prominent risk factor for later development of alcohol-use disorders. Many preclinical models have been employed to study the genetic risks for and biomedical consequences of alcohol drinking. However, these models historically did not result in blood-alcohol concentrations (BACs) exceeding 80 mg%; this relatively modest level is the threshold that currently defines a binge session, according to the NIAAA and CDC. Nevertheless, in alcohol-dependent rodents, binge drinking has been well documented. Key neurobiological substrates localized to brain reward and stress systems have been identified. Studies of newer models of binge drinking without dependence are reviewed here. In these models, rodents, non-human primates, and flies will drink enough to reach high BACs. They often display observable signs of intoxication. The neurobiological consequences of these episodes of binge drinking without dependence are reviewed, and preliminary evidence for roles for GABA, glutamate, opioid peptides, and corticotropin releasing factor are discussed, as is the need for more work to identify the antecedents and consequences of binge drinking in both animal models and humans.
Pierre-Eric Lutz, Amynah A. Pradhan, Celia Goeldner, and Brigitte L. Kieffer. “Sequential and opposing alterations of 5-HT1A receptor function during withdrawal from chronic morphine.” European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 21, 11, Pp. 835–840. Publisher's Version Abstract
Addiction is a brain chronic relapsing disorder associated with emotional distress. The serotonergic system and especially the 5-HT1A receptor crucially regulate emotional behaviors both in humans and rodents. Using [35S]GTPγS autoradiography in mice, we show that 5-HT1A receptor function is enhanced by chronic morphine treatment in the medial prefrontal cortex, and decreased in dorsal raphe nucleus one week later, two regions involved in emotional processing. These molecular adaptations could contribute to the development of emotional disorders experienced by former opiate addicts.
Laura M. Saba, Beth Bennett, Paula L. Hoffman, Kelsey Barcomb, Takao Ishii, Katerina Kechris, and Boris Tabakoff. “A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission.” Neuropharmacology, 60, 7-8, Pp. 1269–1280. Abstract
Genetic influences on the predisposition to complex behavioral or physiological traits can reflect genetic polymorphisms that lead to altered gene product function, and/or variations in gene expression levels. We have explored quantitative variations in an animal's alcohol consumption, using a genetical genomic/phenomic approach. In our studies, gene expression is correlated with amount of alcohol consumed, and genomic regions that regulate the alcohol consumption behavior and the quantitative levels of gene expression (behavioral and expression quantitative trait loci [QTL]) are determined and used as a filter to identify candidate genes predisposing the behavior. We determined QTLs for alcohol consumption using the LXS panel of recombinant inbred mice. We then identified genes that were: 1) differentially expressed between five high and five low alcohol-consuming lines or strains of mice; and 2) were physically located in, or had an expression QTL (eQTL) within the alcohol consumption QTLs. Comparison of mRNA and protein levels in brains of high and low alcohol consuming mice led us to a bioinformatic examination of potential regulation by microRNAs of an identified candidate transcript, Gnb1 (G protein beta subunit 1). We combined our current analysis with our earlier work identifying candidate genes for the alcohol consumption trait in mice, rats and humans. Our overall analysis leads us to postulate that the activity of the GABAergic system, and in particular GABA release and GABA receptor trafficking and signaling, which involves G protein function, contributes significantly to genetic variation in the predisposition to varying levels of alcohol consumption. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
RA Harris, E Osterndorff-Kahanek, I Ponomarev, GE Homanics, and YA Blednov. “Testing the silence of mutations: Transcriptomic and behavioral studies of GABAA receptor α1 and α2 subunit knock-in mice.” Neuroscience letters, 488, 1, Pp. 31–35. Publisher's Version Abstract
Knock-in mice were constructed with mutations in the α1 (H270, A277) and α2 (H270, A277) subunits of the GABAA receptor, which resulted in receptors that lacked modulation by ethanol but retained normal responses to GABA in vitro. A key question is whether these mutant receptors also function normally in vivo. Perturbation of brain function was evaluated by gene expression profiling in the cerebral cortex and by behavioral pharmacology experiments with GABAergic drugs. Analysis of individual transcripts found only six transcripts that were changed in α1 knock-in mice and three in the α2 mutants (p \textless 0.05, corrected for multiple comparisons). Two transcripts that are sensitive to neuronal activity, Arc and Fos, increased about 250% in the α2 mutants, and about 50% in the α1 mutants. Behavioral effects (loss of righting reflex, rotarod) of flurazepam and pentobarbital were not different between α2 mutants and wild-type, but they were enhanced for α1 knock-in mice. These results indicate that introduction of these mutations in the α2 subunit of the GABAA receptor does not produce marked perturbation of brain function, as measured by gene expression and GABAergic behavioral responses, but the same mutations in the α1 subunit produce more pronounced changes, especially in GABAergic function.
Maureen T. Cruz, Michal Bajo, M. Elisabetta Maragnoli, Boris Tabakoff, George R. Siggins, and Marisa Roberto. “Type 7 Adenylyl Cyclase is Involved in the Ethanol and CRF Sensitivity of GABAergic Synapses in Mouse Central Amygdala.” Frontiers in Neuroscience, 4, Pp. 207. Abstract
The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and in the anxiogenic response to ethanol withdrawal. Previously, we found that both ethanol and corticotropin releasing factor (CRF) increase GABAergic transmission in mouse and rat CeA neurons, in part by enhancing the release of GABA via activation of presynaptic CRF1 receptors. CRF1 receptors are coupled to the enzyme adenylyl cyclase (AC), which produces the second messenger cyclic AMP. There are nine isoforms of AC, but we recently found that CRF1 receptors in the pituitary were coupled to the Type 7 AC (AC7). Therefore, using an in vitro electrophysiological approach in brain slices, here we have investigated a possible role of the AC7 signaling pathway in ethanol and CRF effects on CeA GABAergic synapses of genetically modified mice with diminished brain Adcy7 activity (HET) compared to their littermate male wild-type (WT) mice. We found no significant differences in basal membrane properties, mean baseline amplitude of evoked GABA(A) receptor-mediated inhibitory postsynaptic potentials (IPSPs), or paired-pulse facilitation (PPF) of GABA(A)-IPSPs between HET and WT mice. In CeA neurons of WT mice, ethanol superfusion significantly augmented (by 39%) GABAA-IPSPs and decreased PPF (by 25%), suggesting increased presynaptic GABA release. However, these effects were absent in HET mice. CRF superfusion also significantly augmented IPSPs (by 38%) and decreased PPF (by 23%) in WT CeA neurons, and still elicited a significant but smaller (by 13%) increase of IPSP amplitude, but no effect on PPF, in HET mice. These electrophysiological data suggest that AC7 plays an important role in ethanol and CRF modulation of presynaptic GABA release in CeA and thus may underlie ethanol-related behaviors such as anxiety and dependence.
Joanne M. Lewohl, Yury O. Nunez, Peter R. Dodd, Gayatri R. Tiwari, R. Adron Harris, and R. Dayne Mayfield. “Up-regulation of microRNAs in brain of human alcoholics.” Alcoholism, Clinical and Experimental Research, 35, 11, Pp. 1928–1937. Abstract
BACKGROUND: MicroRNAs (miRNAs) are small, noncoding oligonucleotides with an important role in posttranscriptional regulation of gene expression at the level of translation and mRNA degradation. Recent studies have revealed that miRNAs play important roles in a variety of biological processes, such as cell proliferation, neuronal differentiation, developmental timing, synapse function, and neurogenesis. A single miRNA can target hundreds of mRNA transcripts for either translation repression or degradation, but the function of many human miRNAs is not known. METHODS: miRNA array analysis was performed on the prefrontal cortex of 27 individual human cases (14 alcoholics and 13 matched controls). Target genes for differentially expressed miRNAs were predicted using multiple target prediction algorithms and a consensus approach, and predicted targets were matched against differentially expressed mRNAs from the same samples. Over- and under-representation analysis was performed using hypergeometric probability and z-score tests. RESULTS: Approximately 35 miRNAs were significantly up-regulated in the alcoholic group compared with controls. Target prediction showed a large degree of overlap with our published cDNA microarray data. Functional classification of the predicted target genes of the regulated miRNAs includes apoptosis, cell cycle, cell adhesion, nervous system development, and cell-cell signaling. CONCLUSIONS: These data suggest that the reduced expression of genes in human alcoholic cases may be because of the up-regulated miRNAs. Cellular processes fundamental to neuronal plasticity appear to represent major targets of the suggested miRNA regulation.
William J. Giardino, Davelle L. Cocking, Simranjit Kaur, Christopher L. Cunningham, and Andrey E. Ryabinin. “Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference.” PLOS ONE, 6, 10, Pp. e26997. Publisher's Version Abstract
Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward.
Paula L. Hoffman, Beth Bennett, Laura M. Saba, Sanjiv V. Bhave, Phyllis J. Carosone-Link, Cheryl K. Hornbaker, Katerina J. Kechris, Robert W. Williams, and Boris Tabakoff. “Using the PhenoGen Website for “In Silico” Analysis of Morphine-Induced Analgesia: Identifying Candidate Genes.” Addiction biology, 16, 3, Pp. 393–404. Publisher's Version Abstract
The identification of genes that contribute to polygenic (complex) behavioral phenotypes is a key goal of current genetic research. One approach to this goal is to combine gene expression information with genetic information, i.e., to map chromosomal regions that regulate gene expression levels. This approach has been termed “genetical genomics”, and, when used in conjunction with the identification of genomic regions (QTLs) that regulate the complex physiological trait under investigation, provides a strong basis for candidate gene discovery. In this paper, we describe the implementation of the genetical genomic/phenotypic approach to identify candidate genes for sensitivity to the analgesic effect of morphine in BXD recombinant inbred mice. Our analysis was performed “in silico”, using an online interactive resource called PhenoGen (http://phenogen.ucdenver.edu). We describe in detail the use of this resource, which identified a set of candidate genes, some of whose products regulate the cellular localization and activity of the mu opiate receptor. The results demonstrate how PhenoGen can be used to identify a novel set of genes that can be further investigated for their potential role in pain, morphine analgesia and/or morphine tolerance.

Pages