Publications by Year: 2020

2020
Grantham EK, Warden AS, McCarthy GS, Da Costa A, Mason S, Blednov Y, Mayfield RD, and Harris RA.Role of toll-like receptor 7 (TLR7) in voluntary alcohol consumption.” Brain, Behavior, and Immunity, 89, Pp. 423-432. Publisher's Version Abstract
Overactivation of neuroimmune signaling has been linked to excessive ethanol consumption. Toll-like receptors (TLRs) are a major component of innate immune signaling and initiate anti- and pro-inflammatory responses via intracellular signal transduction cascades. TLR7 is upregulated in post-mortem brain tissue from humans with alcohol use disorder (AUD) and animals with prior exposure to ethanol. Despite this evidence, the role of TLR7 in the regulation of voluntary ethanol consumption has not been studied. We test the hypothesis that TLR7 activation regulates voluntary ethanol drinking behavior by administering a TLR7 agonist (R848) during an intermittent access drinking procedure in mice. Acute activation of TLR7 reduced ethanol intake, preference, and total fluid intake due, at least in part, to an acute sickness response. However, chronic pre-treatment with R848 resulted in tolerance to the adverse effects of the drug and a subsequent increase in ethanol consumption. To determine the molecular machinery that mediates these behavioral changes, we evaluated gene expression after acute and chronic TLR7 activation. We found that acute TLR7 activation produces brain region specific changes in expression of immune pathway genes, whereas chronic TLR7 activation causes downregulation of TLRs and blunted cytokine induction, suggesting molecular tolerance. Our results demonstrate a novel role for TLR7 signaling in regulating voluntary ethanol consumption. Taken together, our findings suggest TLR7 may be a viable target for development of therapies to treat AUD.
Grantham EK, Warden AS, McCarthy GS, Da Costa A, Mason S, Blednov Y, Mayfield RD, and Harris RA. “Role of toll-like receptor 7 (TLR7) in voluntary alcohol consumption..” Brain Behavior and Immunity, 89, Pp. 423-432. Publisher's Version Abstract
Overactivation of neuroimmune signaling has been linked to excessive ethanol consumption. Toll-like receptors (TLRs) are a major component of innate immune signaling and initiate anti- and pro-inflammatory responses via intracellular signal transduction cascades. TLR7 is upregulated in post-mortem brain tissue from humans with alcohol use disorder (AUD) and animals with prior exposure to ethanol. Despite this evidence, the role of TLR7 in the regulation of voluntary ethanol consumption has not been studied. We test the hypothesis that TLR7 activation regulates voluntary ethanol drinking behavior by administering a TLR7 agonist (R848) during an intermittent access drinking procedure in mice. Acute activation of TLR7 reduced ethanol intake, preference, and total fluid intake due, at least in part, to an acute sickness response. However, chronic pre-treatment with R848 resulted in tolerance to the adverse effects of the drug and a subsequent increase in ethanol consumption. To determine the molecular machinery that mediates these behavioral changes, we evaluated gene expression after acute and chronic TLR7 activation. We found that acute TLR7 activation produces brain region specific changes in expression of immune pathway genes, whereas chronic TLR7 activation causes downregulation of TLRs and blunted cytokine induction, suggesting molecular tolerance. Our results demonstrate a novel role for TLR7 signaling in regulating voluntary ethanol consumption. Taken together, our findings suggest TLR7 may be a viable target for development of therapies to treat AUD.
Hauser SR, Katner SN, Waeiss RA, Truitt WA, Bell RL, McBride WJ, and Rodd ZA. “Selective breeding for high alcohol preference is associated with increased sensitivity to cannabinoid reward within the nucleus accumbens shell..” Pharmacology Biochemistry and Behavior, 197, Pp. 173002. Publisher's Version Abstract

Rationale

The rate of cannabinoid intake by those with alcohol use disorder (AUD) exceeds that of the general public. The high prevalence of co-abuse of alcohol and cannabis has been postulated to be predicated upon both a common predisposing genetic factor and the interaction of the drugs within the organism. The current experiments examined the effects of cannabinoids in an animal model of AUD.

Objectives

The present study assessed the reinforcing properties of a cannabinoid receptor 1 (CB1) agonist self-administered directly into the nucleus accumbens shell (AcbSh) in female Wistar and alcohol-preferring (P) rats.

Methods

Following guide cannulae surgery aimed at AcbSh, subjects were placed in an operant box equipped with an ‘active lever’ (fixed ratio 1; FR1) that caused the delivery of the infusate and an ‘inactive lever’ that did not. Subjects were arbitrarily assigned to one of seven groups that self-administered either artificial cerebrospinal fluid (aCSF), or 3.125, 6.25, 12.5, or 25 pmol/100 nl of O-1057, a water-soluble CB1 agonist, dissolved in aCSF. The first four sessions of acquisition are followed by aCSF only infusates in sessions 5 and 6 during extinction, and finally the acquisition dose of infusate during session 7 as reinstatement.

Results

The CB1 agonist was self-administered directly into the AcbSh. P rats self-administered the CB1 agonist at lower concentrations and at higher rates compared to Wistar rats.

Conclusions

Overall, the data indicate selective breeding for high alcohol preference has produced rats divergent in response to cannabinoids within the brain reward pathway. The data support the hypothesis that there can be common genetic factors influencing drug addiction.

Brenner E, Tiwari GR, Kapoor M, Liu Y, Brock A, and Mayfield RD. “Single cell transcriptome profiling of the human alcohol-dependent brain.” Human Molecular Genetics, 29, 7, Pp. 1144–1153. Publisher's Version Abstract
Alcoholism remains a prevalent health concern throughout the world. Previous studies have identified transcriptomic patterns in the brain associated with alcohol dependence in both humans and animal models. But none of these studies have systematically investigated expression within the unique cell types present in the brain. We utilized single nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of over 16 000 nuclei isolated from the prefrontal cortex of alcoholic and control individuals. Each nucleus was assigned to one of seven major cell types by unsupervised clustering. Cell type enrichment patterns varied greatly among neuroinflammatory-related genes, which are known to play roles in alcohol dependence and neurodegeneration. Differential expression analysis identified cell type-specific genes with altered expression in alcoholics. The largest number of differentially expressed genes (DEGs), including both protein-coding and non-coding, were detected in astrocytes, oligodendrocytes and microglia. To our knowledge, this is the first single cell transcriptome analysis of alcohol-associated gene expression in any species and the first such analysis in humans for any addictive substance. These findings greatly advance the understanding of transcriptomic changes in the brain of alcohol-dependent individuals.
Mayfield RD, Zhu L, Smith TA, Tiwari GR, and Tucker HO.The SMYD1 and skNAC transcription factors contribute to neurodegenerative diseases. .” Brain, behavior, & immunity - health, 9. Abstract

SMYD1 and the skNAC isoform of the NAC transcription factor have both previously been characterized as transcription factors in hematopoiesis and cardiac/skeletal muscle. Here we report that comparative analysis of genes deregulated by SMYD1 or skNAC knockdown in differentiating C2C12 myoblasts identified transcripts characteristic of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's Diseases (AD, PD, and HD). This led us to determine whether SMYD1 and skNAC function together or independently within the brain. Based on meta-analyses and direct experimentation, we observed SMYD1 and skNAC expression within cortical striata of human brains, mouse brains and transgenic mouse models of these diseases. We observed some of these features in mouse myoblasts induced to differentiate into neurons. Finally, several defining features of Alzheimer's pathology, including the brain-specific, axon-enriched microtubule-associated protein, Tau, are deregulated upon SMYD1 loss.

Keywords: Neuroinflammatory disease; SMYD1 and skNAC; Transcriptional regulation.

Hauser SR, Smith RJ, Toalston JE, Rodd ZA, McBride WJ, and Bell RL. “Spontaneous early withdrawal behaviors after chronic 24-hour free-choice access to ethanol..” Alcohol and Alcoholism, 55, Pp. 480-488. Publisher's Version Abstract

Aims

Abstinence after chronic alcohol consumption leads to withdrawal symptoms, which are exacerbated after repeated cycles of relapse. This study examined withdrawal-like behaviors after chronic ethanol drinking, with or without repeated cycles of deprivation.

Methods

Male alcohol-preferring (P) rats had access to continuous ethanol (CE), chronic ethanol with repeated deprivation (RD), or remained ethanol naïve (EN). The RD group experienced seven cycles of 2 weeks of deprivation and 2 weeks of re-exposure to ethanol after an initial 6 weeks of ethanol access. Withdrawal was measured after an initial 24 h of ethanol re-exposure in the RD group, which coincided with the same day of ethanol access in the CE group. Withdrawal-like behavior was measured by (a) ethanol intake during the initial 24 h of re-exposure, (b) locomotor activity (LMA) in a novel field 9–13 h after removal of ethanol at the beginning of the fifth re-exposure cycle and (c) acoustic startle responding (ASR) 8–15 h after removal of ethanol at the beginning of the sixth re-exposure cycle.

Results

The RD rats displayed a 1-h alcohol deprivation effect (ADE) (temporary ethanol increase), relative to CE rats, during the first to fourth and seventh re-exposure cycles. RD and CE rats displayed significant increases in LMA than EN rats. Regarding ASR, RD rats displayed significantly greater ASR relative to EN rats.

Conclusion

This study confirms that P rats meet the animal model criterion for ethanol-associated dependence, without a reliance on either behavioral (limited fluid access) or pharmacological (seizure threshold manipulation) challenges.

Hauser SR, Smith RJ, Toalston JE, Rodd ZA, McBride WJ, and Bell RL. “Spontaneous early withdrawal behaviors after chronic 24-hour free-choice access to ethanol.” Alcohol and Alcoholism, 55, 5, Pp. 480-488. Publisher's Version Abstract

Aims: Abstinence after chronic alcohol consumption leads to withdrawal symptoms, which are exacerbated after repeated cycles of relapse. This study examined withdrawal-like behaviors after chronic ethanol drinking, with or without repeated cycles of deprivation.

Methods: Male alcohol-preferring (P) rats had access to continuous ethanol (CE), chronic ethanol with repeated deprivation (RD), or remained ethanol naïve (EN). The RD group experienced seven cycles of 2 weeks of deprivation and 2 weeks of re-exposure to ethanol after an initial 6 weeks of ethanol access. Withdrawal was measured after an initial 24 h of ethanol re-exposure in the RD group, which coincided with the same day of ethanol access in the CE group. Withdrawal-like behavior was measured by (a) ethanol intake during the initial 24 h of re-exposure, (b) locomotor activity (LMA) in a novel field 9-13 h after removal of ethanol at the beginning of the fifth re-exposure cycle and (c) acoustic startle responding (ASR) 8-15 h after removal of ethanol at the beginning of the sixth re-exposure cycle.

Results: The RD rats displayed a 1-h alcohol deprivation effect (ADE) (temporary ethanol increase), relative to CE rats, during the first to fourth and seventh re-exposure cycles. RD and CE rats displayed significant increases in LMA than EN rats. Regarding ASR, RD rats displayed significantly greater ASR relative to EN rats.

Conclusion: This study confirms that P rats meet the animal model criterion for ethanol-associated dependence, without a reliance on either behavioral (limited fluid access) or pharmacological (seizure threshold manipulation) challenges.

Fritz M, Klawonn AM, Zhao Q, Sullivan EV, Zahr NM, and Pfefferbaum A. “Structural and biochemical imaging reveals systemic LPS-induced changes in the rat brain.” J Neuroimmunol , 348, Pp. p.577367-577367. Publisher's Version Abstract
Despite mounting evidence for the role of inflammation in Major Depressive Disorder (MDD), in vivo preclinical investigations of inflammation-induced negative affect using whole brain imaging modalities are scarce, precluding a valid model within which to evaluate pharmacological interventions. Here we used an E. coli lipopolysaccharide (LPS)-based model of inflammation-induced depressive signs in rats to explore brain changes using multimodal neuroimaging methods. During the acute phase of the LPS response (2 h post injection), prior to the emergence of a task-quantifiable depressive phenotype, striatal glutamine levels and splenial, retrosplenial, and peri-callosal hippocampal cortex volumes were greater than at baseline. LPS-induced depressive behaviors observed at 24 h, however, occurred concurrently with lower than control levels of striatal glutamine and a reversibility of volume expansion (i.e., shrinkage of splenial, retrosplenial, and peri-callosal hippocampal cortex to baseline volumes). In both striatum and hippocampus at 24 h, mRNA expression in LPS relative to control animals demonstrated alterations in enzymes and transporters regulating glutamine homeostasis. Collectively, the observed behavioral, in vivo structural and metabolic, and mRNA expression alterations suggest a critical role for astrocytic regulation of inflammation-induced depressive behaviors.
Bailly J, Del Rossi N, Runtz L, Li JJ, Park D, Scherrer G, Tanti A, Birling MC, Darcq E, and Kieffer BL. “Targeting morphine-responsive neurons: generation of a knock-in mouse line expressing Cre recombinase from the mu-opioid receptor gene locus.” eNeuro, 7, 3, Pp. ENEURO.0433-19. Publisher's Version Abstract
The mu-opioid receptor (MOR) modulates nociceptive pathways and reward processing, and mediates the strong analgesic and addictive properties of both medicinal as well as abused opioid drugs. MOR function has been extensively studied, and tools to manipulate or visualize the receptor protein are available. However, circuit mechanisms underlying MOR-mediated effects are less known, because genetic access to MOR-expressing neurons is lacking. Here we report the generation of a knock-in Oprm1-Cre mouse line, which allows targeting and manipulating MOR opioid-responsive neurons. A cDNA encoding a T2A cleavable peptide and Cre recombinase fused to enhanced green fluorescent protein (EGFP/Cre) was inserted downstream of the Oprm1 gene sequence. The resulting Oprm1-Cre line shows intact Oprm1 gene transcription. MOR and EGFP/Cre proteins are coexpressed in the same neurons, and localized in cytoplasmic and nuclear compartments, respectively. MOR signaling is unaltered, demonstrated by maintained DAMGO-induced G-protein activation, and in vivo MOR function is preserved as indicated by normal morphine-induced analgesia, hyperlocomotion, and sensitization. The Cre recombinase efficiently drives the expression of Cre-dependent reporter genes, shown by local virally mediated expression in the medial habenula and brain-wide fluorescence on breeding with tdTomato reporter mice, the latter showing a distribution patterns typical of MOR expression. Finally, we demonstrate that optogenetic activation of MOR neurons in the ventral tegmental area of Oprm1-Cre mice evokes strong avoidance behavior, as anticipated from the literature. The Oprm1-Cre line is therefore an excellent tool for both mapping and functional studies of MOR-positive neurons, and will be of broad interest for opioid, pain, and addiction research.
Savarese AM, Ozburn AR, Metten P, Schlumbohm JP, Hack WR, LeMoine K, Hunt H, Hausch F, Bauder M, and Crabbe JC. “Targeting the glucocorticoid receptor reduces binge-like drinking in high drinking in the dark (HDID-1) mice.” Alcohol Clin Exp Res , 44, 5, Pp. 1025-1036. Publisher's Version Abstract

Background: Chronic alcohol exposure can alter glucocorticoid receptor (GR) function in some brain areas that promotes escalated and compulsive-like alcohol intake. GR antagonism can prevent dependence-induced escalation in drinking, but very little is known about the role of GR in regulating high-risk nondependent alcohol intake. Here, we investigate the role of GR in regulating binge-like drinking and aversive responses to alcohol in the High Drinking in the Dark (HDID-1) mice, which have been selectively bred for high blood ethanol (EtOH) concentrations (BECs) in the Drinking in the Dark (DID) test, and in their founder line, the HS/NPT.

Methods: In separate experiments, male and female HDID-1 mice were administered one of several compounds that inhibited GR or its negative regulator, FKBP51 (mifepristone [12.5, 25, 50, 100 mg/kg], CORT113176 [20, 40, 80 mg/kg], and SAFit2 [10, 20, 40 mg/kg]) during a 2-day DID task. EtOH consumption and BECs were measured. EtOH conditioned taste and place aversion (CTA and CPA, respectively) were measured in separate HDID-1 mice after mifepristone administration to assess GR's role in regulating the conditioned aversive effects of EtOH. Lastly, HS/NPT mice were administered CORT113176 during DID to assess whether dissimilar effects from those of HDID-1 would be observed, which could suggest that selective breeding had altered sensitivity to the effects of GR antagonism on binge-like drinking.

Results: GR antagonism (with both mifepristone and CORT113176) selectively reduced binge-like EtOH intake and BECs in the HDID-1 mice, while inhibition of FKBP51 did not alter intake or BECs. In contrast, GR antagonism had no effect on EtOH intake or BECs in the HS/NPT mice. Although HDID-1 mice exhibit attenuated EtOH CTA, mifepristone administration did not enhance the aversive effects of EtOH in either a CTA or CPA task.

Conclusion: These data suggest that the selection process increased sensitivity to GR antagonism on EtOH intake in the HDID-1 mice, and support a role for the GR as a genetic risk factor for high-risk alcohol intake.

Keywords: Alcohol; Aversion; Binge Drinking; FKBP51; Glucocorticoid Receptor.

Savarese AM, Ozburn AR, Metten P, Schlumbohm JP, Hack WR, LeMoine K, Hunt H, Hausch F, Bauder M, and Crabbe JC. “Targeting the Glucocorticoid Receptor Reduces Binge‐Like Drinking in High Drinking in the Dark (HDID‐1) Mice.” Alcoholism: Clinical and Experimental Research, 44, 5, Pp. 1025-1036. Publisher's Version Abstract

Background

Chronic alcohol exposure can alter glucocorticoid receptor (GR) function in some brain areas that promotes escalated and compulsive‐like alcohol intake. GR antagonism can prevent dependence‐induced escalation in drinking, but very little is known about the role of GR in regulating high‐risk nondependent alcohol intake. Here, we investigate the role of GR in regulating binge‐like drinking and aversive responses to alcohol in the High Drinking in the Dark (HDID‐1) mice, which have been selectively bred for high blood ethanol (EtOH) concentrations (BECs) in the Drinking in the Dark (DID) test, and in their founder line, the HS/NPT.

Methods

In separate experiments, male and female HDID‐1 mice were administered one of several compounds that inhibited GR or its negative regulator, FKBP51 (mifepristone [12.5, 25, 50, 100 mg/kg], CORT113176 [20, 40, 80 mg/kg], and SAFit2 [10, 20, 40 mg/kg]) during a 2‐day DID task. EtOH consumption and BECs were measured. EtOH conditioned taste and place aversion (CTA and CPA, respectively) were measured in separate HDID‐1 mice after mifepristone administration to assess GR’s role in regulating the conditioned aversive effects of EtOH. Lastly, HS/NPT mice were administered CORT113176 during DID to assess whether dissimilar effects from those of HDID‐1 would be observed, which could suggest that selective breeding had altered sensitivity to the effects of GR antagonism on binge‐like drinking.

Results

GR antagonism (with both mifepristone and CORT113176) selectively reduced binge‐like EtOH intake and BECs in the HDID‐1 mice, while inhibition of FKBP51 did not alter intake or BECs. In contrast, GR antagonism had no effect on EtOH intake or BECs in the HS/NPT mice. Although HDID‐1 mice exhibit attenuated EtOH CTA, mifepristone administration did not enhance the aversive effects of EtOH in either a CTA or CPA task.

Conclusion

These data suggest that the selection process increased sensitivity to GR antagonism on EtOH intake in the HDID‐1 mice, and support a role for the GR as a genetic risk factor for high‐risk alcohol intake.

Kirson D, Oleata CS, and Roberto M. “Taurine Suppression of Central Amygdala GABAergic Inhibitory Signaling via Glycine Receptors Is Disrupted in Alcohol Dependence.” Alcoholism: Clinical and Experimental Research, 44, 2, Pp. 445-454. Publisher's Version Abstract

Background

Alcohol use disorder (AUD) increases brain stress systems while suppressing reward system functioning. One expression of stress system recruitment is elevated GABAergic activity in the central amygdala (CeA), which is involved in the excessive drinking seen with AUD. The sulfonic amino acid taurine, a glycine receptor partial agonist, modulates GABAergic activity in the rewarding effects of alcohol. Despite taurine abundance in the amygdala, its role in the dysregulation of GABAergic activity associated with AUD has not been studied. Thus, here, we evaluated the effects of taurine on locally stimulated GABAergic neurotransmission in the CeA of naïve‐ and alcohol‐dependent rats.

Methods

We recorded intracellularly from CeA neurons of naïve‐ and alcohol‐dependent rats, quantifying locally evoked GABAA receptor‐mediated inhibitory postsynaptic potentials (eIPSP). We examined the effects of taurine and alcohol on CeA eIPSP to characterize potential alcohol dependence‐induced changes in the effects of taurine.

Results

We found that taurine decreased amplitudes of eIPSP in CeA neurons of naïve rats, without affecting the acute alcohol‐induced facilitation of GABAergic responses. In CeA neurons from dependent rats, taurine no longer had an effect on eIPSP, but now blocked the ethanol (EtOH)‐induced increase in eIPSP amplitude normally seen. Additionally, preapplication of the glycine receptor‐specific antagonist strychnine blocked the EtOH‐induced increase in eIPSP amplitude in neurons from naïve rats.

Conclusions

These data suggest taurine may act to oppose the effects of acute alcohol via the glycine receptor in the CeA of naïve rats, and this modulatory system is altered in the CeA of dependent rats.

Farris SP, Tiwari GR, Ponomareva O, 1 Lopez MF, Mayfield RD, and Becker HC.Transcriptome Analysis of Alcohol Drinking in Non-Dependent and Dependent Mice Following Repeated Cycles of Forced Swim Stress Exposure..” Brain sciences, 10, 5. Publisher's Version Abstract

Chronic stress is a known contributing factor to the development of drug and alcohol addiction. Animal models have previously shown that repeated forced swim stress promotes escalated alcohol consumption in dependent animals. To investigate the underlying molecular adaptations associated with stress and chronic alcohol exposure, RNA-sequencing and bioinformatics analyses were conducted on the prefrontal cortex (CTX) of male C57BL/6J mice that were behaviorally tested for either non-dependent alcohol consumption (CTL), chronic intermittent ethanol (CIE) vapor dependent alcohol consumption, repeated bouts of forced swim stress alone (FSS), and chronic intermittent ethanol with forced swim stress (CIE + FSS). Brain tissue from each group was collected at 0-h, 72-h, and 168-h following the final test to determine long-lasting molecular changes associated with maladaptive behavior. Our results demonstrate unique temporal patterns and persistent changes in coordinately regulated gene expression systems with respect to the tested behavioral group. For example, increased expression of genes involved in "transmitter-gated ion channel activity" was only determined for CIE + FSS. Overall, our results provide a summary of transcriptomic adaptations across time within the CTX that are relevant to understanding the neurobiology of chronic alcohol exposure and stress.

Keywords: RNA-Sequencing; alcohol drinking; dependence; mouse; prefrontal cortex; stress.

Sullivan EV. “Why timing matters in alcohol use disorder recovery..” American Journal of Psychiatry, 117, Pp. 1022-1024. Publisher's Version
Crabbe JC, Ozburn AR, Hitzemann RJ, Spence SE, Hack WR, Schlumbohm JP, and Metten P. “Tetracycline derivatives reduce binge alcohol consumption in High Drinking in the Dark mice..” Brain, Behaviour and Immunity, 4, Pp. 100061. Publisher's Version Abstract
Alcohol use disorders (AUDs) are prevalent, and are characterized by binge-like drinking, defined by patterns of focused drinking where dosages ingested in 2–4 ​h reach intoxicating blood alcohol levels (BALs). Current medications are few and compliance with the relatively rare prescribed usage is low. Hence, novel and more effective medications are needed. We developed a mouse model of genetic risk for binge drinking (HDID: High Drinking in the Dark mice) by selectively breeding for high BALs after binge drinking. A transcriptional analysis of HDID brain tissue with RNA-Seq implicated neuroinflammatory mechanisms, and, more specifically extracellular matrix genes, including those encoding matrix metalloproteinases (MMPs). Prior experiments from other groups have shown that the tetracycline derivatives doxycycline, minocycline, and tigecycline, reduce binge drinking in inbred C57BL/6J mice. We tested these three compounds in female and male HDID mice and found that all three reduced DID and BAL. They had drug-specific effects on intake of water or saccharin in the DID assay. Thus, our results show that the effectiveness of synthetic tetracycline derivatives as potential therapeutic agents for AUDs is not limited to the single C57BL/6J genotype previously targeted, but extends to a mouse model of a population at high risk for AUDs.

Pages