Publications by Year: 2023

2023
Gruol DL, Calderon D, French K, Melkonian C, Huitron-Resendiz S, Cates-Gatto C, and Roberts AJ.Neuroimmune interactions with binge alcohol drinking in the cerebellum of IL-6 transgenic mice..” Neuropharmacology, 228, Pp. 109455. Publisher's Version Abstract

The neuroimmune system of the brain, which is comprised primarily of astrocytes and microglia, regulates a variety of homeostatic mechanisms that underlie normal brain function. Numerous conditions, including alcohol consumption, can disrupt this regulatory process by altering brain levels of neuroimmune factors. Alcohol and neuroimmune factors, such as proinflammatory cytokines IL-6 and TNF-alpha, act at similar targets in the brain, including excitatory and inhibitory synaptic transmission. Thus, alcohol-induced production of IL-6 and/or TNF-alpha could be important contributing factors to the effects of alcohol on the brain. Recent studies indicate that IL-6 plays a role in alcohol drinking and the effects of alcohol on the brain activity following the cessation of alcohol consumption (post-alcohol period), however information on these topics is limited. Here we used homozygous and heterozygous female and male transgenic mice with increased astrocyte expression of IL-6 to examined further the interactions between alcohol and IL-6 with respect to voluntary alcohol drinking, brain activity during the post-alcohol period, IL-6 signal transduction, and expression of synaptic proteins. Wildtype littermates (WT) served as controls. The transgenic mice model brain neuroimmune status with respect to IL-6 in subjects with a history of persistent alcohol use. Results showed a genotype dependent reduction in voluntary alcohol consumption in the Drinking in the Dark protocol and in frequency-dependent relationships between brain activity in EEG recordings during the post-alcohol period and alcohol consumption. IL-6, TNF-alpha, IL-6 signal transduction partners pSTAT3 and c/EBP beta, and synaptic proteins were shown to play a role in these genotypic effects.

Vozella V, Cruz B, Feldman HC, Bullard R, Bianchi PC, Natividad LA, Cravatt BF, Zorrilla EP, Ciccocioppo R, and Roberto M.Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behaviour and drinking in Marchigian Sardinian alcohol-preferring rats..” British journal of pharmacology. Publisher's Version Abstract

Background and purpose: The endocannabinoid (eCB) system plays an important homeostatic role in the regulation of stress circuits and has emerged as a therapeutic target to treat stress disorders and alcohol use disorder (AUD). Extensive research has elucidated a role for the eCB anandamide (AEA), but less is known about 2-arachidonoylglycerol (2-AG) mediated signalling.

Experimental approach: We pharmacologically enhanced eCB signalling by inhibiting the 2-AG metabolizing enzyme, monoacylglycerol lipase (MAGL), in male and female Marchigian Sardinian alcohol-preferring (msP) rats, a model of innate alcohol preference and stress hypersensitivity, and in control Wistar rats. We tested the acute effect of the selective MAGL inhibitor MJN110 in alleviating symptoms of alcohol drinking, anxiety, irritability and fear.

Key results: A single systemic administration of MJN110 increased 2-AG levels in the central amygdala, prelimbic and infralimbic cortex but did not acutely alter alcohol drinking. MAGL inhibition reduced aggressive behaviours in female msPs, and increased defensive behaviours in male msPs, during the irritability test. Moreover, in the novelty-induced hypophagia test, MJN110 selectively enhanced palatable food consumption in females, mitigating stress-induced food suppression. Lastly, msP rats showed increased conditioned fear behaviour compared with Wistar rats, and MJN110 reduced context-associated conditioned fear responses, but not cue-probed fear expression, in male msPs.

Conclusions and implications: Acute inhibition of MAGL attenuated some stress-related responses in msP rats but not voluntary alcohol drinking. Our results provide new insights into the sex dimorphism documented in stress-induced responses. Sex-specific eCB-based approaches should be considered in the clinical development of therapeutics.

Keywords: 2-AG; alcohol use disorder; endocannabinoid system; monoacylglycerol lipase; sex differences; stress.

Grantham EK, Tiwari GR, Ponomereva O, Harris RA, Lopez MF, Becker HC, and Mayfield RD.Transcriptome changes in the nucleus of the solitary tract induced by repeated stress, alcohol dependence, or stress-induced drinking in dependent mice..” Neuropharmacology, 242. Publisher's Version Abstract

Stress increases alcohol consumption in dependent animals and contributes to the development of alcohol use disorder. The nucleus of the solitary tract (NTS) is a critical brainstem region for integrating and relaying central and peripheral signals to regulate stress responses, but it is not known if it plays a role in alcohol dependence- or in stress-induced escalations in alcohol drinking in dependent mice. Here, we used RNA-sequencing and bioinformatics analyses to study molecular adaptations in the NTS of C57BL/6J male mice that underwent an ethanol drinking procedure that uses exposure to chronic intermittent ethanol (CIE) vapor, forced swim stress (FSS), or both conditions (CIE + FSS). Transcriptome profiling was performed at three different times after the last vapor cycle (0-hr, 72-hr, and 168-hr) to identify changes in gene expression associated with different stages of ethanol intoxication and withdrawal. In the CIE and CIE + FSS groups at 0-hr, there was upregulation of genes enriched for cellular response to type I interferon (IFN) and type I IFN- and cytokine-mediated signaling pathways, while the FSS group showed upregulation of neuronal genes. IFN signaling was the top gene network positively correlated with ethanol consumption levels in the CIE and CIE + FSS groups. Results from different analyses (differential gene expression, weighted gene coexpression network analysis, and rank-rank hypergeometric overlap) indicated that activation of type I IFN signaling would be expected to increase ethanol consumption. The CIE and CIE + FSS groups also shared an immune signature in the NTS as has been demonstrated in other brain regions after chronic ethanol exposure. A temporal-based clustering analysis revealed a unique expression pattern in the CIE + FSS group that suggests the interaction of these two stressors produces adaptations in synaptic and glial functions that may drive stress-induced drinking.

Pages