Publications

2013
Jennifer G. Bray, Kenneth C. Reyes, Amanda J. Roberts, Richard M. Ransohoff, and Donna L. Gruol. “Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression.” Neuropharmacology, 67, Pp. 115–125. Abstract
It has been shown that ethanol exposure can activate astrocytes and microglia resulting in the production of neuroimmune factors, including the chemokine CCL2. The role of these neuroimmune factors in the effects of ethanol on the central nervous system has yet to be elucidated. To address this question, we investigated the effects of ethanol on synaptic transmission and plasticity in the hippocampus from mice that express elevated levels of CCL2 in the brain and their non-transgenic littermate controls. The brains of the transgenic mice simulate one aspect of the alcoholic brain, chronically increased levels of CCL2. We used extracellular field potential recordings in acutely isolated hippocampal slices to identify neuroadaptive changes produced by elevated levels of CCL2 and how these neuroadaptive changes affect the actions of acute ethanol. Results showed that synaptic transmission and the effects of ethanol on synaptic transmission were similar in the CCL2-transgenic and non-transgenic hippocampus. However, long-term potentiation (LTP), a cellular mechanism thought to underlie learning and memory, in the CCL2-transgenic hippocampus was resistant to the ethanol-induced depression of LTP observed in the non-transgenic hippocampus. Consistent with these results, ethanol pretreatment significantly impaired cued and contextual fear conditioning in non-transgenic mice, but had no effect in CCL2-transgenic mice. These data show that chronically elevated levels of CCL2 in the hippocampus produce neuroadaptive changes that block the depressing effects of ethanol on hippocampal synaptic plasticity and support the hypothesis that CCL2 may provide a neuroprotective effect against the devastating actions of ethanol on hippocampal function.
D. Kapfhamer, S. Taylor, M. E. Zou, J. P. Lim, V. Kharazia, and U. Heberlein. “Taok2 controls behavioral response to ethanol in mice.” Genes, Brain, and Behavior, 12, 1, Pp. 87–97. Abstract
Despite recent advances in the understanding of ethanol's biological action, many of the molecular targets of ethanol and mechanisms behind ethanol's effect on behavior remain poorly understood. In an effort to identify novel genes, the products of which regulate behavioral responses to ethanol, we recently identified a mutation in the dtao gene that confers resistance to the locomotor stimulating effect of ethanol in Drosophila. dtao encodes a member of the Ste20 family of serine/threonine kinases implicated in MAP kinase signaling pathways. In this study, we report that conditional ablation of the mouse dtao homolog, Taok2, constitutively and specifically in the nervous system, results in strain-specific and overlapping alterations in ethanol-dependent behaviors. These data suggest a functional conservation of dtao and Taok2 in mediating ethanol's biological action and identify Taok2 as a putative candidate gene for ethanol use disorders in humans.
Christopher L. Cunningham, Tara L. Fidler, Kevin V. Murphy, Jennifer A. Mulgrew, and Phoebe J. Smitasin. “Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal.” Biological Psychiatry, 73, 3, Pp. 249–255. Abstract
BACKGROUND: Drinking to alleviate the symptoms of acute withdrawal is included in diagnostic criteria for alcoholism, but the contribution of acute withdrawal relief to high alcohol intake has been difficult to model in animals. METHODS: Ethanol dependence was induced by passive intragastric ethanol infusions in C57BL/6J (B6) and DBA/2J (D2) mice; nondependent control animals received water infusions. Mice were then allowed to self-administer ethanol or water intragastrically. RESULTS: The time course of acute withdrawal was similar to that produced by chronic ethanol vapor exposure in mice, reaching a peak at 7 to 9 hours and returning to baseline within 24 hours; withdrawal severity was greater in D2 than in B6 mice (experiment 1). Postwithdrawal delays in initial ethanol access (1, 3, or 5 days) reduced the enhancement in later ethanol intake normally seen in D2 (but not B6) mice allowed to self-infuse ethanol during acute withdrawal (experiment 2). The postwithdrawal enhancement of ethanol intake persisted over a 5-day abstinence period in D2 mice (experiment 3). D2 mice allowed to drink ethanol during acute withdrawal drank more ethanol and self-infused more ethanol than nondependent mice (experiment 4). CONCLUSIONS: Alcohol access during acute withdrawal increased later alcohol intake in a time-dependent manner, an effect that may be related to a genetic difference in sensitivity to acute withdrawal. This promising model of negative reinforcement encourages additional research on the mechanisms underlying acute withdrawal relief and its role in determining risk for alcoholism.
Carolyn Ferguson, Matthew McKay, R. Adron Harris, and Gregg E. Homanics. “Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease (TALEN)-mediated gene inactivation.” Alcohol (Fayetteville, N.Y.), 47, 8, Pp. 595–599. Abstract
Genetically engineered mice are a valuable resource for studies of the behavioral effects of ethanol. However, for some behavioral tests of ethanol action, the rat is a superior model organism. Production of genetically engineered rats has been severely hampered due to technical limitations. Here we utilized a promising new technique for efficient site-specific gene modification to create a novel gene knockout rat line. This approach is based on transcriptional activator-like effector nucleases (TALENs). TALENs function in pairs and bind DNA in a sequence-specific manner. Upon binding to the target sequence, a functional nuclease is reconstituted that creates double-stranded breaks in the DNA that are efficiently repaired by non-homologous end joining. This error-prone process often results in deletions of varying lengths at the targeted locus. The toll-like receptor 4 (Tlr4) gene was selected for TALEN-mediated gene inactivation. Tlr4 has been implicated in ethanol-induced neuroinflammation and neurodegeneration, as well as multiple ethanol-induced behavioral effects. To generate Tlr4 knockout rats, a pair of TALEN constructs was created that specifically target Exon 1 immediately downstream of the start of translation. TALEN mRNAs were microinjected into the cytoplasm of one-cell Wistar rat embryos. Of 13 live-born pups that resulted, one harbored a mutation in Exon 1 of Tlr4. The mutated allele consisted of a 13 base-pair deletion that was predicted to create a frameshift mutation after amino acid 25. This founder rat successfully transmitted the mutation to F1 offspring. Heterozygous F1 offspring were interbred to produce homozygous F2 animals. Homozygous mutants expressed the 13-bp deletion in Tlr4 mRNA. In contrast to control rats that produced a robust increase in plasma tumor necrosis factor alpha in response to a lipopolysaccharide challenge, homozygous rats had a markedly attenuated response. Thus, the mutant Tlr4 allele generated by TALEN-mediated gene inactivation represents a null allele. This knockout rat line will be valuable for studies of ethanol action as well as more general inflammatory conditions including septic shock. In conclusion, TALEN-mediated gene targeting in rat zygotes represents an inexpensive, efficient, and rapid method for creating genetically engineered rats.
Lauren A. Vanderlinden, Laura M. Saba, Katerina Kechris, Michael F. Miles, Paula L. Hoffman, and Boris Tabakoff. “Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.” PloS One, 8, 7, Pp. e68878. Abstract
To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA). Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL) with a genomic region that regulates alcohol consumption (bQTL). To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories) and from gene expression data from 6 brain regions (nucleus accumbens (NA); prefrontal cortex (PFC); ventral tegmental area (VTA); striatum (ST); hippocampus (HP); cerebellum (CB)) available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA) and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.
Lindsay M. McCracken, James R. Trudell, Mandy L. McCracken, and R. Adron Harris. “Zinc-dependent modulation of α2- and α3-glycine receptor subunits by ethanol.” Alcoholism, Clinical and Experimental Research, 37, 12, Pp. 2002–2010. Abstract
BACKGROUND: Strychnine-sensitive glycine receptors (GlyRs) are expressed throughout the brain and spinal cord and are among the strongly supported protein targets of alcohol. This is based largely on studies of the α1-subunit; however, α2- and α3-GlyR subunits are as or more abundantly expressed than α1-GlyRs in multiple forebrain brain areas considered to be important for alcohol-related behaviors, and uniquely some α3-GlyRs undergo RNA editing. Nanomolar and low micromolar concentrations of zinc ions potentiate GlyR function, and in addition to zinc's effects on glycine-activated currents, we have recently shown that physiological concentrations of zinc also enhance the magnitude of ethanol (EtOH)'s effects on α1-GlyRs. METHODS: Using 2-electrode voltage-clamp electrophysiology in oocytes expressing either α2- or α3-GlyRs, we first tested the hypothesis that the effects of EtOH on α2- and α3-GlyRs would be zinc dependent, as we have previously reported for α1-GlyRs. Next, we constructed an α3P185L-mutant GlyR to test whether RNA-edited and unedited GlyRs contain differences in EtOH sensitivity. Last, we built a homology model of the α3-GlyR subunit. RESULTS: The effects of EtOH (20 to 200 mM) on both subunits were greater in the presence than in the absence of 500 nM added zinc. The α3P185L-mutation that corresponds to RNA editing increased sensitivity to glycine and decreased sensitivity to EtOH. CONCLUSIONS: Our findings provide further evidence that zinc is important for determining the magnitude of EtOH's effects at GlyRs and suggest that by better understanding zinc/EtOH interactions at GlyRs, we may better understand the sites and mechanisms of EtOH action.
Maenghee Kang-Park, Brigitte L. Kieffer, Amanda J. Roberts, George R. Siggins, and Scott D. Moore. “κ-Opioid receptors in the central amygdala regulate ethanol actions at presynaptic GABAergic sites.” The Journal of Pharmacology and Experimental Therapeutics, 346, 1, Pp. 130–137. Abstract
Human and animal studies indicate that κ-opioid receptors (KORs) are involved in ethanol drinking and dependence (Xuei et al., 2006; Walker and Koob, 2008; Walker et al., 2011). Using in vitro single-cell recording techniques in mouse brain slices, we examined the physiologic effects of KOR activation in the central amygdala (CeA) on GABAergic neurotransmission and its interaction with acute ethanol. A selective KOR agonist (U69593, 1 μM) diminished evoked GABAergic inhibitory postsynaptic currents (IPSCs) by 18% (n = 10), whereas blockade of KORs with a selective antagonist (nor-binaltorphimine, 1 μM) augmented the baseline evoked GABAergic IPSCs by 14% (P \textless 0.01; n = 34), suggesting that the KOR system contributes to tonic inhibition of GABAergic neurotransmission in the CeA. In addition, the enhancement by acute ethanol of GABAergic IPSC amplitudes was further augmented by pharmacologic blockade of KORs, from 14% (n = 36) to 27% (n = 26; P \textless 0.01), or by genetic deletion of KORs, from 14% in wild-type mice (n = 19) to 34% in KOR knockout mice (n = 13; P \textless 0.01). Subsequent experiments using tetrodotoxin to block activity-dependent neurotransmission suggest that KORs regulate GABA release at presynaptic sites. Our data support the idea that KORs modulate GABAergic synaptic responses and ethanol effects as one of multiple opioid system-dependent actions of ethanol in the CeA, possibly in a circuit-specific manner.
2012
Peter A. Groblewski, Andrey E. Ryabinin, and Christopher L. Cunningham. “Activation and role of the medial prefrontal cortex (mPFC) in extinction of ethanol-induced associative learning in mice.” Neurobiology of Learning and Memory, 97, 1, Pp. 37–46. Abstract
Although the medial prefrontal cortex (mPFC) has been shown to be integrally involved in extinction of a number of associative behaviors, its role in extinction of alcohol (ethanol)-induced associative learning has received little attention. Previous reports have provided evidence supporting a role for the mPFC in acquisition and extinction of amphetamine-induced conditioned place preference (CPP) in rats, however, it remains unknown if this region is necessary for extinction of ethanol (EtOH)-induced associative learning in mice. Using immunohistochemical analysis of phosphorylated and unphosphorylated cAMP response element-binding protein (CREB), the current set of experiments first showed that the prelimbic (PL) and infralimbic (IL) subregions of the mPFC exhibited dynamic responses in phosphorylation of CREB to a Pavlovian-conditioned, EtOH-paired cue. Interestingly, CREB phosphorylation within these regions was sensitive to manipulations of the EtOH-cue contingency-that is, the cue-induced increase of pCREB in both the PL and IL was absent following extinction. In order to confirm a functional role of the mPFC in regulating the extinction process, we then showed that electrolytic lesions of the mPFC following acquisition blocked subsequent extinction of EtOH-CPP. Together, these experiments indicate a role for the PL and IL subregions of the mPFC in processing changes of the EtOH-cue contingency, as well as in regulating extinction of EtOH-induced associative learning in mice.
Cecilia M. Borghese and R. Adron Harris. “Alcohol Dependence and Genes Encoding α2 and γ1 GABAA Receptor Subunits.” Alcohol Research : Current Reviews, 34, 3, Pp. 345–354. Publisher's Version Abstract
One approach to identifying the causes of alcoholism, particularly without crossing ethical boundaries in human subjects, is to look at the person’s genome (and particularly at the variations that naturally arise in the DNA) to identify those variations that seem to be found more commonly in people with the disease. Some of these analyses have focused on the genes that encode subunits of the receptor for the brain chemical (i.e., neurotransmitter) γ-aminobutyric acid (GABA). Different epidemiological genetic studies have provided evidence that variations in certain GABAA receptor (GABAA-R) subunits, particularly subunits α2 and γ1, are correlated with alcohol dependence. Manipulations of these genes and their expression in mice and rats also are offering clues as to the role of specific GABAA-Rs in the molecular mechanisms underlying alcoholism and suggest possibilities for new therapeutic approaches.
Richard L. Bell, Helen J. K. Sable, Giancarlo Colombo, Petri Hyytia, Zachary A. Rodd, and Lawrence Lumeng. “Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity.” Pharmacology, Biochemistry, and Behavior, 103, 1, Pp. 119–155. Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Y. A. Blednov, R. D. Mayfield, J. Belknap, and R. A. Harris. “Behavioral actions of alcohol: phenotypic relations from multivariate analysis of mutant mouse data.” Genes, Brain, and Behavior, 11, 4, Pp. 424–435. Abstract
Behavioral studies on genetically diverse mice have proven powerful for determining relationships between phenotypes and have been widely used in alcohol research. Most of these studies rely on naturally occurring genetic polymorphisms among inbred strains and selected lines. Another approach is to introduce variation by engineering single-gene mutations in mice. We have tested 37 different mutant mice and their wild-type controls for a variety (31) of behaviors and have mined this data set by K-means clustering and analysis of correlations. We found a correlation between a stress-related response (activity in a novel environment) and alcohol consumption and preference for saccharin. We confirmed several relationships detected in earlier genetic studies, including positive correlation of alcohol consumption with saccharin consumption and negative correlations with conditioned taste aversion and alcohol withdrawal severity. Introduction of single-gene mutations either eliminated or greatly diminished these correlations. The three tests of alcohol consumption used (continuous two-bottle choice and two limited access tests: drinking in the dark and sustained high alcohol consumption) share a relationship with saccharin consumption, but differ from each other in their correlation networks. We suggest that alcohol consumption is controlled by multiple physiological systems where single-gene mutations can disrupt the networks of such systems.
Yuri A. Blednov, Jill M. Benavidez, Gregg E. Homanics, and R. Adron Harris. “Behavioral characterization of knockin mice with mutations M287L and Q266I in the glycine receptor α1 subunit.” The Journal of Pharmacology and Experimental Therapeutics, 340, 2, Pp. 317–329. Abstract
We used behavioral pharmacology to characterize heterozygous knockin mice with mutations (Q266I or M287L) in the α1 subunit of the glycine receptor (GlyR) (J Pharmacol Exp Ther 340:304-316, 2012). These mutations were designed to reduce (M287L) or eliminate (Q266I) ethanol potentiation of GlyR function. We asked which behavioral effects of ethanol would be reduced more in the Q266I mutant than the M287L and found rotarod ataxia to be the behavior that fulfilled this criterion. Compared with controls, the mutant mice also differed in ethanol consumption, ethanol-stimulated startle response, signs of acute physical dependence, and duration of loss of righting response produced by ethanol, butanol, ketamine, pentobarbital, and flurazepam. Some of these behavioral changes were mimicked in wild-type mice by acute injections of low, subconvulsive doses of strychnine. Both mutants showed increased acoustic startle response and increased sensitivity to strychnine seizures. Thus, in addition to reducing ethanol action on the GlyRs, these mutations reduced glycinergic inhibition, which may also alter sensitivity to GABAergic drugs.
Amanda M. Barkley-Levenson and John C. Crabbe. “Bridging Animal and Human Models: Translating From (and to) Animal Genetics.” Alcohol Research: Current Reviews, 34, 3, Pp. 325–335. Abstract
Genetics play an important role in the development and course of alcohol abuse, and understanding genetic contributions to this disorder may lead to improved preventative and therapeutic strategies in the future. Studies both in humans and in animal models are necessary to fully understand the neurobiology of alcoholism from the molecular to the cognitive level. By dissecting the complex facets of alcoholism into discrete, well-defined phenotypes that are measurable in both human populations and animal models of the disease, researchers will be better able to translate findings across species and integrate the knowledge obtained from various disciplines. Some of the key areas of alcoholism research where consilience between human and animal studies is possible are alcohol withdrawal severity, sensitivity to rewards, impulsivity, and dysregulated alcohol consumption.
Marisa Roberto, Nicholas W. Gilpin, and George R. Siggins. “The Central Amygdala and Alcohol: Role of γ-Aminobutyric Acid, Glutamate, and Neuropeptides.” Cold Spring Harbor Perspectives in Medicine, 2, 12. Publisher's Version Abstract
Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug seeking and drug taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptative mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid-ergic (GABAergic) transmission in CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and AMPA receptors in CeA, whereas chronic alcohol up-regulates N-methyl-d-aspartate receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and anti-stress (e.g., NPY, nociceptin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence., Alcohol has strong and persistent effects on synaptic transmission in the central amygdala. Most notably, it potentiates the GABAergic system.
Cecilia M. Borghese, Yuri A. Blednov, Yu Quan, Sangeetha V. Iyer, Wei Xiong, S. John Mihic, Li Zhang, David M. Lovinger, James R. Trudell, Gregg E. Homanics, and R. Adron Harris. “Characterization of Two Mutations, M287L and Q266I, in the α1 Glycine Receptor Subunit That Modify Sensitivity to Alcohols.” The Journal of Pharmacology and Experimental Therapeutics, 340, 2, Pp. 304–316. Publisher's Version Abstract
Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317–329, 2012).
C. Del Boca, P. E. Lutz, J. Le Merrer, P. Koebel, and B. L. Kieffer. “Cholecystokinin knock-down in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice.” Neuroscience, 218, Pp. 185–195. Abstract
Cholecystokinin (CCK) is a neuropeptide widely distributed in the mammalian brain. This peptide regulates many physiological functions and behaviors, such as cardio-respiratory control, thermoregulation, nociception, feeding, memory processes and motivational responses, and plays a prominent role in emotional responses including anxiety and depression. CCK-expressing brain regions involved in these functions remain unclear and their identification represents an important step towards understanding CCK function in the brain. The basolateral amygdala (BLA) is strongly involved in emotional processing and expresses high levels of CCK. In this study we examined the contribution of CCK expressed in this brain region to emotional responses in mice. To knockdown CCK specifically in the BLA, we used stereotaxic delivery of recombinant adeno-associated viral vectors expressing a CCK-targeted shRNA. This procedure efficiently reduced CCK levels locally. shCCK-treated animals showed reduced levels of anxiety in the elevated plus-maze, and lower despair-like behavior in the forced swim test. Our data demonstrate that CCK expressed in the BLA represents a key brain substrate for anxiogenic and depressant effects of the peptide. The study also suggests that elevated amygdalar CCK could contribute to panic and major depressive disorders that have been associated with CCK dysfunction in humans.
Angela R. Ozburn, R. D. Mayfield, Igor Ponomarev, Theresa A. Jones, Yuri A. Blednov, and R. A. Harris. “Chronic self-administration of alcohol results in elevated ΔFosB: comparison of hybrid mice with distinct drinking patterns.” BMC Neuroscience, 13, Pp. 130. Publisher's Version Abstract
The inability to reduce or regulate alcohol intake is a hallmark symptom for alcohol use disorders. Research on novel behavioral and genetic models of experience-induced changes in drinking will further our knowledge on alcohol use disorders. Distinct alcohol self-administration behaviors were previously observed when comparing two F1 hybrid strains of mice: C57BL/6J x NZB/B1NJ (BxN) show reduced alcohol preference after experience with high concentrations of alcohol and periods of abstinence while C57BL/6J x FVB/NJ (BxF) show sustained alcohol preference. These phenotypes are interesting because these hybrids demonstrate the occurrence of genetic additivity (BxN) and overdominance (BxF) in ethanol intake in an experience dependent manner. Specifically, BxF exhibit sustained alcohol preference and BxN exhibit reduced alcohol preference after experience with high ethanol concentrations; however, experience with low ethanol concentrations produce sustained alcohol preference for both hybrids. In the present study, we tested the hypothesis that these phenotypes are represented by differential production of the inducible transcription factor, ΔFosB, in reward, aversion, and stress related brain regions.
Simranjit Kaur, Ju Li, Mary P. Stenzel-Poore, and Andrey E. Ryabinin. “Corticotropin releasing factor acting on corticotropin releasing factor receptor type 1 is critical for binge alcohol drinking in mice.” Alcoholism, Clinical and Experimental Research, 36, 2, Pp. 369–376. Publisher's Version Abstract
Background The corticotropin releasing factor (CRF) system has been implicated in the regulation of alcohol consumption. However, previous mouse knockout (KO) studies using continuous ethanol access have failed to conclusively confirm this. Recent studies have shown that CRF receptor 1 (CRFR1) antagonists attenuate alcohol intake in the limited access “drinking in the dark” (DID) model of binge drinking. To avoid the potential non-specific effects of antagonists, in the present study we tested alcohol drinking in CRFR1, CRFR2, CRF and Ucn1 KO and corresponding wild-type (WT) littermates using the DID paradigm. Methods On days 1–3, the CRFR1, CRFR2, Ucn1 and CRF KO mice and their respective wildtype (WT) littermates were provided with 20% ethanol or 10% sucrose for 2 hours with water available at all other times. On day 4, access to ethanol or sucrose was increased to 4 hours. At the end of each drinking session, the volume of ethanol consumed was recorded and at the conclusion of the last session, blood was also collected for blood ethanol concentration (BEC) analysis. Results CRFR1 KO mice had lower alcohol intakes and BECs and higher intakes of sucrose compared to WTs. In contrast, CRFR2 KO mice, while having reduced intakes initially, had similar alcohol intakes on days 2–4 and similar BECs as the WTs. In order to determine the ligand responsible, Ucn1 and CRF KO and WT mice were tested next. While Ucn1 KOs had similar alcohol intakes and BECs to their WTs, CRF KO mice showed reduced alcohol consumption and lower BECs compared to WTs. Conclusions Our results confirm that CRFR1 plays a key role in binge drinking and identify CRF as the ligand critically involved in excessive alcohol consumption.
William J. Giardino and Andrey E. Ryabinin. “Corticotropin-releasing factor: innocent until proven guilty.” Nature Reviews Neuroscience, 13, 1, Pp. 70–70. Publisher's Version
Julie Le Merrer, Lauren Faget, Audrey Matifas, and Brigitte L. Kieffer. “Cues predicting drug or food reward restore morphine-induced place conditioning in mice lacking delta opioid receptors.” Psychopharmacology, 223, 1, Pp. 99–106. Abstract
RATIONALE: The exact role of delta opioid receptors in drug-induced conditioned place preference (CPP) remains debated. Under classical experimental conditions, morphine-induced CPP is decreased in mice lacking delta opioid receptors (Oprd1 (-/-)). Morphine self-administration, however, is maintained, suggesting that drug-context association rather than drug reward is deficient in these animals. OBJECTIVES: This study further examined the role of delta opioid receptors in mediating drug-cue associations, which are necessary for the expression of morphine-induced CPP. METHODS: We first identified experimental conditions under which Oprd1 (-/-) mice are able to express CPP to morphine (5, 10 or 20 mg/kg) in a drug-free state and observed that, in this paradigm, CPP was dependent on circadian time conditions. We then took advantage of this particularity to assess the ability of various cues (internal or discrete), predicting either drug or food reward, to restore CPP induced by morphine (10 mg/kg) in Oprd1 (-/-) mice in conditions under which they normally fail to express CPP. RESULTS: We found that presentation of circadian, drug or auditory cues, predicting morphine or food reward, restored morphine CPP in Oprd1 (-/-) mice, which then performed as well as control mice. CONCLUSIONS: This study reveals that, in contrast to spatial cues, internal or discrete morphine-predicting stimuli permit full expression of morphine CPP in Oprd1 (-/-) mice. Delta receptors, therefore, appear to play a crucial role in modulating spatial contextual cue-related responses. This activity may be critical when context gains control over behavior, as is the case for context-induced relapse in drug abuse.

Pages