Publications

2005
C. Alling, J. D. Chick, R. Anton, R. D. Mayfield, M. Salaspuro, A. Helander, and R. A. Harris. “Revealing alcohol abuse: to ask or to test?.” Alcoholism, Clinical and Experimental Research, 29, 7, Pp. 1257–1263.
Carles Sanchis-Segura, Judy E. Grisel, M. Foster Olive, Sandra Ghozland, George F. Koob, Amanda J. Roberts, and Michael S. Cowen. “Role of the endogenous opioid system on the neuropsychopharmacological effects of ethanol: new insights about an old question.” Alcoholism, Clinical and Experimental Research, 29, 8, Pp. 1522–1527. Abstract
This article presents the proceedings of the symposium "Endogenous Opioids and Voluntary Ethanol Consumption: What Have We Learnt From Knock-out Mice?" presented at the meeting of the International Society for Biomedical Research on Alcoholism held in Heidelberg/Mannheim, Germany, in September/October 2004. The organizers and chairpersons were Michael S. Cowen and Carles Sanchis-Segura. The presentations were as follows: (1) Regulation of the Opioid System by Alcohol: Comparison of Alcohol-Preferring and -Nonpreferring Strains by Michael S. Cowen; (2) Endogenous Opioids and Alcohol: Lessons From Microdialysis and Knock-out Mice by M. Foster Olive; (3) From Neurochemistry to Neuroanatomy: The Hypothalamic Arcuate Nucleus as a Main Site for Ethanol-Opioids Interaction by Carles Sanchis-Segura; (4) Sensitivity to Ethanol Is Modulated by beta-Endorphin in Transgenic Mice by Judy E. Grisel, Amanda J. Roberts, and George F. Koob; and () The mu-Opioid Receptor Modulates Acute Ethanol Sensitivity and Ethanol Withdrawal Severity by Sandra Ghozland.
K. Cronise, D. A. Finn, P. Metten, and J. C. Crabbe. “Scheduled access to ethanol results in motor impairment and tolerance in female C57BL/6J mice.” Pharmacology Biochemistry and Behavior, 81, 4, Pp. 943–953. Publisher's Version Abstract
We recently reported a method where water-restricted mice were given scheduled access to ethanol followed by access to water. C57BL/6J mice would repeatedly self-administer ethanol in amounts that produced high and stable blood ethanol concentrations (BEC) [Finn DA, Belknap JK, Cronise K, Yoneyama N, Murillo A, Crabbe JC. A procedure to produce high alcohol intake in mice. Psychopharmacol 2005;178:471–480]. The studies reported here demonstrate that behavioral signs of motor impairment result from these high alcohol intakes, and that there was some evidence of tolerance development across repeated sessions. Female C57BL/6J mice were allowed 30 min access to ethanol (5% v/v) followed by 2.5 h access to water either: every 3rd day for 12 days; every 2nd day for 28 days; or every 2nd day for 9 days. On intervening days, mice had 3 h access to water. A control group had daily access to water only. Mice consumed 2–2.5 g/kg ethanol in 30 min, resulting in BECs of 1.4–1.5 mg/ml. Motor impairment was assessed using the accelerating or fixed speed rotarod, balance beam or screen test. In all studies, mice were tested for motor impairment immediately after 30 min access to ethanol or water. In Experiment 1, ethanol-exposed mice had shorter latencies to fall from the fixed speed rotarod and more foot slips on the balance beam than the control group, indicating motor impairment. After drinking ethanol, mice also fell from a screen more quickly than during sober pretraining. In Experiment 2, mice tested (without prior training) for motor impairment and tolerance on the fixed speed rotarod at 6.5 and 10 RPM showed repeated motor impairment in the ethanol group, but did not develop tolerance. In Experiment 3, mice were first given rotarod training at 10 RPM. Following each fluid access period, performance was impaired in mice self-administering ethanol at 10, but not 15 RPM, when compared to control mice. There was no evidence of tolerance across days. However, on the last day, all mice were tested at both RPM following an i.p. injection of 2 g/kg ethanol. Ethanol-experienced mice were less impaired at both RPM than the ethanol-naïve mice, indicating tolerance development according to this between-groups index. These results suggest that C57BL/6J mice will repeatedly consume alcohol in amounts that produce motor impairment under these scheduled fluid access conditions, and that a modest degree of tolerance can be detected using appropriate tests.
George R. Breese, Kathleen Chu, Christopher V. Dayas, Douglas Funk, Darin J. Knapp, George F. Koob, Dzung Anh Lê, Laura E. O'Dell, David H. Overstreet, Amanda J. Roberts, Rajita Sinha, Glenn R. Valdez, and Friedbert Weiss. “Stress enhancement of craving during sobriety: a risk for relapse.” Alcoholism, Clinical and Experimental Research, 29, 2, Pp. 185–195. Abstract
This report of the proceedings of a symposium presented at the 2004 Research Society on Alcoholism Meeting provides evidence linking stress during sobriety to craving that increases the risk for relapse. The initial presentation by Rajita Sinha summarized clinical evidence for the hypothesis that there is an increased sensitivity to stress-induced craving in alcoholics. During early abstinence, alcoholics who were confronted with stressful circumstances showed increased susceptibility for relapse. George Breese presented data demonstrating that stress could substitute for repeated withdrawals from chronic ethanol to induce anxiety-like behavior. This persistent adaptive change induced by multiple withdrawals allowed stress to induce an anxiety-like response that was absent in animals that were not previously exposed to chronic ethanol. Subsequently, Amanda Roberts reviewed evidence that increased drinking induced by stress was dependent on corticotropin-releasing factor (CRF). In addition, rats that were stressed during protracted abstinence exhibited anxiety-like behavior that was also dependent on CRF. Christopher Dayas indicated that stress increases the reinstatement of an alcohol-related cue. Moreover, this effect was enhanced by previous alcohol dependence. These interactive effects between stress and alcohol-related environmental stimuli depended on concurrent activation of endogenous opioid and CRF systems. A.D. Lê covered information that indicated that stress facilitated reinstatement to alcohol responding and summarized the influence of multiple deprivations on this interaction. David Overstreet provided evidence that restraint stress during repeated alcohol deprivations increases voluntary drinking in alcohol-preferring (P) rats that results in withdrawal-induced anxiety that is not observed in the absence of stress. Testing of drugs on the stress-induced voluntary drinking implicated serotonin and CRF involvement in the sensitized response. Collectively, the presentations provided convincing support for an involvement of stress in the cause of relapse and continuing alcohol abuse and suggested novel pharmacological approaches for treating relapse induced by stress.
T. A. Zhang, A. W. Hendricson, M. F. Wilkemeyer, M. J. Lippmann, M. E. Charness, and R. A. Morrisett. “Synergistic effects of the peptide fragment D-NAPVSIPQ on ethanol inhibition of synaptic plasticity and NMDA receptors in rat hippocampus.” Neuroscience, 134, 2, Pp. 583–593. Abstract
The L1 cell adhesion molecule has been implicated in ethanol teratogenesis as well as NMDAR-dependent long-term potentiation (LTP) of synaptic transmission, a process thought to be critical for neural development. Ethanol inhibits LTP at least in part by interacting with NMDA receptors. Ethanol also inhibits L1-mediated cell adhesion in a manner that is prevented by an octapeptide, D-NAPVSIPQ (D-NAP), as well as long chain alcohols such as 1-octanol. Here we analyzed the effects of D-NAP and 1-octanol on ethanol modulation of LTP induced by theta burst stimulation in two subfields of the rat hippocampus, the dentate gyrus and area CA1. When theta burst stimulation was delivered in ethanol (50 mM), LTP was inhibited by about 50%. Surprisingly, when D-NAP (10(-7) M) and ethanol were co-applied or applied sequentially, LTP was completely absent. The effects of D-NAP were persistent, since delivery of a second theta burst stimulation following washout of D-NAP and ethanol elicited minimal plasticity. Application of D-NAP alone had no effect on LTP induction or expression. The synergistic effect of D-NAP on ethanol inhibition of LTP was concentration-dependent since D-NAP (10(-10) M) had an intermediate effect, while D-NAP (10(-13) M) had no effect on ethanol suppression of LTP. These observations were also replicated with a different ethanol antagonist, 1-octanol, in area CA1. To address the mechanisms underlying this long-lasting suppression of LTP, the sensitivity of pharmacologically isolated NMDAR extracellular field potentials to combinations of D-NAP and ethanol was determined. D-NAP (10(-7)M) alone had no effect on NMDA extracellular field potentials; however, the peptide significantly increased the inhibitory action of ethanol on NMDA extracellular field potential. The findings suggest that D-NAP and 1-octanol selectively interact with NMDA receptors in an ethanol-dependent manner, further implicating the L1 cell adhesion molecule in alcohol-related brain disorders.
Christoph Fehr, Renee L. Shirley, John C. Crabbe, John K. Belknap, Kari J. Buck, and Tamara J. Phillips. “The syntaxin binding protein 1 gene (Stxbp1) is a candidate for an ethanol preference drinking locus on mouse chromosome 2.” Alcoholism, Clinical and Experimental Research, 29, 5, Pp. 708–720. Abstract
{BACKGROUND: We previously mapped a quantitative trait locus (QTL) for ethanol preference drinking to mouse chromosome 2 (mapped with high confidence
George Robert Siggins, Marisa Roberto, and Zhiguo Nie. “The tipsy terminal: Presynaptic effects of ethanol.” Pharmacology & Therapeutics, 107, 1, Pp. 80–98. Publisher's Version Abstract
Considerable evidence suggests that the synapse is the most sensitive CNS element for ethanol effects. Although most alcohol research has focussed on the postsynaptic sites of ethanol action, especially regarding interactions with the glutamatergic and GABAergic receptors, few such studies have directly addressed the possible presynaptic loci of ethanol action, and even fewer describe effects on synaptic terminals. Nonetheless, there is burgeoning evidence that presynaptic terminals play a major role in ethanol effects. The methods used to verify such ethanol actions range from electrophysiological analysis of paired-pulse facilitation (PPF) and spontaneous and miniature synaptic potentials to direct recording of ion channel activity and transmitter/messenger release from acutely isolated synaptic terminals, and microscopic observation of vesicular release, with a focus predominantly on GABAergic, glutamatergic, and peptidergic synapses. The combined data suggest that acute ethanol administration can both increase and decrease the release of these transmitters from synaptic terminals, and more recent results suggest that prolonged or chronic ethanol treatment (CET) can also alter the function of presynaptic terminals. These new findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain the role of presynaptic terminals and their involvement in alcohol's behavioral actions. Other future directions should include an assessment of ethanol's effects on presynaptic signal transduction linkages and on the molecular machinery of transmitter release and exocytosis in general. Such studies could lead to the formulation of new treatment strategies for alcohol intoxication, alcohol abuse, and alcoholism.
Matthew M. Ford, Jeffrey D. Nickel, and Deborah A. Finn. “Treatment with and withdrawal from finasteride alter ethanol intake patterns in male C57BL/6J mice: potential role of endogenous neurosteroids?.” Alcohol (Fayetteville, N.Y.), 37, 1, Pp. 23–33. Abstract
Exogenous administration of the gamma-aminobutyric acid (GABA)-ergic neurosteroid allopregnanolone (ALLO) can increase ethanol intake in rats and mice. To determine the contribution of endogenous neurosteroids (i.e., ALLO and related pregnane steroids) in the regulation of established ethanol consumption patterns in male C57BL/6J (B6) mice, the 5alpha-reductase (5alpha-R) enzyme inhibitor, finasteride (FIN), was chronically administered and then subsequently withdrawn. Mice were provided daily 2-h limited access to a 10% vol/vol ethanol solution (10E) and water in lickometer chambers during the dark phase. Following the establishment of stable 10E intake patterns, mice were injected intraperitoneally with either vehicle (20% wt/vol 2-hydroxypropyl-beta-cyclodextrin; n=8) or FIN (50 mg/kg; n=16) for 7 days. Effects of withdrawal from FIN treatment were subsequently assessed for an additional 7 days. Ethanol intakes were significantly decreased with acute FIN treatment (days 1-3) and during early withdrawal (days 1-3). Acute FIN treatment was also associated with an extended latency to first bout, reduced first bout size, and greatly attenuated sipper contact count during the initial 20-min interval of 10E access. These findings collectively indicated that acute FIN treatment markedly attenuated the initiation of 10E consumption during the limited access sessions. The influence of FIN on 10E intake patterns was largely dissipated with chronic treatment, suggesting that compensatory changes in neurosteroid modulation of inhibitory tone may have occurred. Thus, acute FIN treatment modulated ethanol intake patterns in a manner opposite to that previously demonstrated for a physiologically relevant, exogenous ALLO dose, consistent with the ability of a alpha-R inhibitor to block ALLO biosynthesis. Manipulation of endogenous neurosteroid activity via biosynthetic enzyme inhibition or antagonism of steroid binding to the GABA type A receptor may prove to be a beneficial pharmacotherapeutic strategy in the intervention of alcohol abuse and alcoholism.
V. F. Turek, N. O. Tsivkovskaia, P. Hyytia, S. Harding, A. D. Lê, and A. E. Ryabinin. “Urocortin 1 expression in five pairs of rat lines selectively bred for differences in alcohol drinking.” Psychopharmacology, 181, 3, Pp. 511–517. Abstract
RATIONALE: There is accumulating evidence that the neuropeptide urocortin 1 (Ucn1) is involved in alcohol consumption. Thus far, however, most studies have been performed in mice. OBJECTIVES: The purpose of the present study was to characterize Ucn1 expression in rats selectively bred for either high or low alcohol intake. METHODS: Brains from naive male rats of five pairs of independently selected lines (iP/iNP, AA/ANA, HARF/LARF, HAD1/LAD1, and HAD2/LAD2) were analyzed by immunohistochemistry. RESULTS: Significant differences were found between iP/iNP, HARF/LARF, and HAD2/LAD2 in number of Ucn1-containing cells in the Edinger-Westphal (EW) nucleus (the main source of Ucn1 in the brain), whereas no significant differences were found between HAD1/LAD1 and AA/ANA. Similarly, significant differences in the optical density of Ucn1 immunoreactivity in EW were found between iP/iNP, HARF/LARF, and HAD2/LAD2, whereas no differences on this measure were found between HAD1/LAD1 and AA/ANA. In the lateral septum (LS, the main projection area of Ucn1-containing neurons in the rat), significant differences were found only between AA/ANA and HAD2/LAD2; however, a meta-analysis indicated that across all five lines, preferring animals had a significantly greater number of Ucn1-positive fibers than nonpreferring animals. CONCLUSIONS: These results provide evidence that, in rats, Ucn1 may be involved in regulation of alcohol intake, and that this regulation may occur through the Ucn1 projections to LS.
2004
Marisa Roberto, Paul Schweitzer, Samuel G. Madamba, David G. Stouffer, Loren H. Parsons, and George R. Siggins. “Acute and Chronic Ethanol Alter Glutamatergic Transmission in Rat Central Amygdala: an In Vitro and In Vivo Analysis.” Journal of Neuroscience, 24, 7, Pp. 1594–1603. Publisher's Version Abstract
The modulation of glutamatergic transmission by ethanol may contribute to ethanol intoxication, reinforcement, tolerance, and dependence. Therefore, we used in vitro electrophysiological and in vivo microdialysis techniques to investigate the effects of acute and chronic ethanol on glutamatergic transmission in the central nucleus of amygdala (CeA). Superfusion of 5-66 mm ethanol decreased compound glutamatergic EPSPs and EPSCs in CeA neurons, with half-maximal inhibition elicited by 14 mm ethanol. Ethanol (44 mm) decreased both non-NMDAR- and NMDAR-mediated EPSPs and EPSCs by 21%. Both the ethanol- and ifenprodil-induced depression of NMDAR-mediated EPSPs and EPSCs was enhanced in rats that received chronic ethanol treatment (CET). Ifenprodil also occluded the ethanol effect, suggesting that NR2B subunit-containing receptors may be involved. With local applications of NMDA, acute ethanol elicited a greater inhibition of NMDA currents in slices taken from CET (47%) compared with naive (30%) animals, suggesting that CET sensitizes NMDA receptors to ethanol. Acute ethanol also reduced paired pulse facilitation of EPSPs and EPSCs only in CET animals, suggesting acute ethanol-induced increase of glutamate release. This finding was supported by in vivo experiments showing that infusion of ethanol (0.1-1 m) via reverse microdialysis significantly increased glutamate release into the CeA dialysate but only after CET. Moreover, baseline CeA glutamate content was significantly higher in CET compared with naive animals. These combined findings suggest that CET and withdrawal lead to neuroadaptations of glutamatergic transmission at both presynaptic and postsynaptic sites in CeA, and glutamatergic synapses in CeA may play an important role in ethanol dependence.
R. A. Harris and S. J. Mihic. “Alcohol and inhibitory receptors: unexpected specificity from a nonspecific drug.” Proceedings of the National Academy of Sciences of the United States of America, 101, 1, Pp. 2–3.
In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural code representing the learned odor by recruiting new synapses into that code. Pairing of an odor-conditioned stimulus with an electric shock-unconditioned stimulus causes new projection neuron synapses to respond to the odor along with those normally activated prior to conditioning. Different odors recruit different groups of projection neurons into the spatial code. The change in odor representation after conditioning appears to be intrinsic to projection neurons. The rapid recruitment by conditioning of new synapses into the representation of sensory information may be a general mechanism underlying many forms of short-term memory.
James R. Trudell and R. Adron Harris. “Are sobriety and consciousness determined by water in protein cavities?.” Alcoholism, Clinical and Experimental Research, 28, 1, Pp. 1–3.
Yuri A. Blednov, Danielle Walker, and R. Adron Harris. “Blockade of the leptin-sensitive pathway markedly reduces alcohol consumption in mice.” Alcoholism, Clinical and Experimental Research, 28, 11, Pp. 1683–1692. Abstract
BACKGROUND: The neuropeptide leptin links adipose stores with hypothalamic centers and serves as an endocrine signal involved in the regulation of appetite (and possibly in the endorphinergic modulation of the drug reward system). Increased plasma leptin has been observed at the onset of alcohol withdrawal in humans, and ethanol consumption after withdrawal was increased by injection of leptin in mice. We addressed the role of leptin in alcohol-related behaviors by studying ethanol consumption in two strains of spontaneously mutant mice that lack leptin (ob/ob) or the leptin receptor (db/db). METHODS: Two strains of mutant leptin-deficient (ob/ob) or leptin-resistant (db/db) mice were tested in a two-bottle-choice paradigm and were compared with wild-type (C57BL/6 inbred strain) mice. The effects of leptin injection on voluntary ethanol intake have been investigated in ob/ob and C57BL/6 mice. RESULTS: Males and females of both mutant strains showed a significantly lower preference for alcohol in a two-bottle-choice paradigm compared with wild-type mice. Male ob/ob mice demonstrated slightly higher avoidance of bitter taste, and females of the both mutant strains showed a reduced preference for saccharin solutions. Administration of leptin (1 mg/kg intraperitoneally, daily for 8 days) altered body weight but failed to increase the preference for ethanol in ob/ob mice; i.e., we could not correct the effects of leptin deficiency on alcohol consumption by the injection of leptin. Also, there were no differences between the effects of leptin (1 mg/kg intraperitoneally, daily for 8 days) and saline injections on alcohol consumption in C57BL/6 mice. CONCLUSIONS: These data show that blockade of the leptin pathway markedly decreases the preference for alcohol intake, but this decrease may be the result of compensatory or developmental changes in other systems rather than a more direct effect of leptin on alcohol consumption.
Zachary A. Rodd, Richard L. Bell, Roberto I. Melendez, Kelly A. Kuc, Lawrence Lumeng, Ting-Kai Li, James M. Murphy, and William J. McBride. “Comparison of intracranial self-administration of ethanol within the posterior ventral tegmental area between alcohol-preferring and Wistar rats.” Alcoholism, Clinical and Experimental Research, 28, 8, Pp. 1212–1219. Abstract
BACKGROUND: A previous study indicated that selectively bred alcohol-preferring (P) rats self-administered ethanol (EtOH) directly into the ventral tegmental area (VTA), whereas the alcohol-nonpreferring line did not. Wistar rats will also self-administer EtOH directly into the posterior VTA. Because Wistar rats also have a low preference for EtOH solutions but self-inject EtOH into the VTA, this study was undertaken to test the hypothesis that there is an association between EtOH preference and sensitivity of the VTA to the reinforcing effects of EtOH. METHODS: Adult P and Wistar rats were assigned to groups that received one of the following concentrations of EtOH: 0, 50, 75, 100, 150, or 200 mg/100 ml. Rats were connected to the microinjection system, placed into two-lever (active and inactive) experimental chambers, and given EtOH for the first four sessions (acquisition), artificial cerebrospinal fluid for sessions 5 and 6 (extinction), and EtOH again in session 7 (reinstatement). Responding on the active lever produced a 100-nl injection of the infusate. RESULTS: P rats self-infused 75 to 200 mg/100 ml EtOH and demonstrated lever discrimination, whereas Wistar rats reliably self-infused only 150 and 200 mg/100 ml EtOH. Both P and Wistar rats reduced responding on the active lever when artificial cerebrospinal fluid (aCSF) was substituted for EtOH and reinstated responding in session 7 when EtOH was restored, although P rats demonstrated a very robust enhancement of responding for 100 and 150 mg/100 ml EtOH, and this was not found for Wistar rats. CONCLUSIONS: These results suggest that, compared with Wistar rats, the posterior VTA of P rats was more sensitive to the reinforcing effects of EtOH. Furthermore, the reinstatement data suggest that the posterior VTA of P rats underwent neuronal alterations as a result of prior EtOH exposure and extinction that changed the reinforcing effects of EtOH within this region.
I. Ponomarev, G. L. Schafer, Y. A. Blednov, R. W. Williams, V. R. Iyer, and R. A. Harris. “Convergent analysis of cDNA and short oligomer microarrays, mouse null mutants and bioinformatics resources to study complex traits.” Genes, Brain, and Behavior, 3, 6, Pp. 360–368. Abstract
Gene expression data sets have recently been exploited to study genetic factors that modulate complex traits. However, it has been challenging to establish a direct link between variation in patterns of gene expression and variation in higher order traits such as neuropharmacological responses and patterns of behavior. Here we illustrate an approach that combines gene expression data with new bioinformatics resources to discover genes that potentially modulate behavior. We have exploited three complementary genetic models to obtain convergent evidence that differential expression of a subset of genes and molecular pathways influences ethanol-induced conditioned taste aversion (CTA). As a first step, cDNA microarrays were used to compare gene expression profiles of two null mutant mouse lines with difference in ethanol-induced aversion. Mice lacking a functional copy of G protein-gated potassium channel subunit 2 (Girk2) show a decrease in the aversive effects of ethanol, whereas preproenkephalin (Penk) null mutant mice show the opposite response. We hypothesize that these behavioral differences are generated in part by alterations in expression downstream of the null alleles. We then exploited the WebQTL databases to examine the genetic covariance between mRNA expression levels and measurements of ethanol-induced CTA in BXD recombinant inbred (RI) strains. Finally, we identified a subset of genes and functional groups associated with ethanol-induced CTA in both null mutant lines and BXD RI strains. Collectively, these approaches highlight the phosphatidylinositol signaling pathway and identify several genes including protein kinase C beta isoform and preproenkephalin in regulation of ethanol- induced conditioned taste aversion. Our results point to the increasing potential of the convergent approach and biological databases to investigate genetic mechanisms of complex traits.
Stephen L. Boehm, Laura Peden, R. Adron Harris, and Yuri A. Blednov. “Deletion of the fyn-kinase gene alters sensitivity to GABAergic drugs: dependence on beta2/beta3 GABAA receptor subunits.” The Journal of Pharmacology and Experimental Therapeutics, 309, 3, Pp. 1154–1159. Abstract
Tyrosine phosphorylation can modulate GABA(A) receptor function, and deletion of the fyn-kinase gene alters GABAergic function in olfactory bulb neurons, as reported by Kitazawa, Yagi, Miyakawa, Niki, and Kawai (J Neurophysiol 1998;79:137-142). Our goal was to determine whether fyn gene deletion altered behavioral and functional actions of compounds that act on GABA(A) receptors. Such evidence might suggest a role for fyn-kinase in modulating GABA(A) receptor function, possibly via direct interactions between the kinase and receptor. Using the loss of righting reflex test, we found that null mutants were less sensitive to the hypnotic effects of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), a GABA(A) receptor agonist. Subunit specificity was suggested by the observation that null mutants were also less sensitive to the hypnotic effects of etomidate, a GABAergic compound that is selective for receptors possessing beta2 and/or beta3 receptor subunits. The genotypes did not differ in sensitivity to zolpidem, an alpha1-selective GABAergic drug. GABA(A) receptor functional assays ((36)Cl(-) influx) supported our behavioral results; the actions of the GABA(A) agonists, THIP and muscimol, were reduced in the cerebellar membranes of fyn-null mutant mice. Importantly, similar results were seen with etomidate. Binding of [(3)H]flunitrazepam supported the idea that this is due to a decrease in functional GABA(A) receptor density. These data suggest that fyn-kinase may alter the function of GABA(A) receptors, perhaps via actions on beta2 and/or beta3 receptor subunits.
Rajani Maiya and R. Dayne Mayfield. “Dopamine Transporter Network and Pathways.” In Human Brain Proteome, edited by BT International Review - of Neurobiology, 61: Pp. 79–96. Academic Press. Publisher's Version Abstract
This chapter explains the dopamine transporter network and pathways. The family of Na+ and Cl- dependent transporters that includes the dopamine (DA), and norepinephrine (NE) transporters (DAT and NET, respectively), functions to clear released neurotransmitters from the synaptic cleft. DAT regulates the spatial and temporal aspects of dopaminergic synaptic transmission and is an integral part of the mesostriatal DA system. DAT is also the site of action for various psychostimulants, such as cocaine and amphetamine. The chapter describes the structure and function of DAT. DAT is expressed in cell bodies, dendrites, and axonal membranes of dopaminergic neurons. DAT is localized to the plasma membranes, and smooth endoplasmic reticulum of dendrites and dendritic spines in the substantia nigra. DAT undergoes regulated trafficking both in vitro and in vivo, and this may be important for the functional and pharmacological sensitivity of the transporter. The mass spectrometry (MS) approach helps to identify a network of proteins that exist in a complex with DAT. The MS approaches used are MALDI (matrix-assisted laser desorption ionization) and ESI (electrospray ionization) mass spectrometry.
Richard L. Bell, Zachary A. Rodd, Cathleen C. Hsu, Lawrence Lumeng, Ting-Kai Li, James M. Murphy, and William J. McBride. “Effects of concurrent access to a single concentration or multiple concentrations of ethanol on ethanol intake by periadolescent high-alcohol-drinking rats.” Alcohol (Fayetteville, N.Y.), 33, 2, Pp. 107–115. Abstract
The objectives of the current study were to assess the effects of access to different concentrations of ethanol and sex of the animal on ethanol consumption of high-alcohol-drinking (HAD-1 and HAD-2) rats during adolescence [postnatal days (PNDs) 30 through 60]. At the beginning of adolescence (PND 30), the rats were given concurrent access to either a single concentration [15% volume/volume (vol./vol.)] or multiple concentrations [10%, 20%, and 30% (vol./vol.)] of ethanol and water. Analyses of ethanol consumption data revealed significant (P \textless .025) main effects of line, ethanol condition, and week, and a significant line by sex by ethanol condition by week interaction. For the first week, both male and female HAD-1 and HAD-2 rats consumed more ethanol under the multiple ethanol concentration condition than under the single ethanol concentration condition. However, across the second through fourth weeks, this pattern was seen primarily in male and female HAD-1 rats and to a lesser degree in female HAD-2 rats. In general, female rats consumed more fluids than consumed by male rats, and male rats displayed a higher preference for ethanol over water ratio than observed for their female counterparts. In addition, in comparison with HAD-2 rats, HAD-1 rats drank more ethanol and displayed a higher preference for ethanol ratio. Overall, the current study results indicate that, compared with access to a single concentration (which is used in most studies), concurrent access to multiple concentrations of ethanol produced significantly higher ethanol intakes in periadolescent HAD rats, supporting the suggestion that this ethanol drinking condition would have a greater impact on neuronal development. In addition, although the replicate lines were selectively bred by using the same criteria and foundation stock, the higher ethanol intakes of the HAD-1 line, compared with intakes for the HAD-2 line, seen in the current study support the suggestion that there are some differences in their genetic make-up, affecting ethanol intake, which are expressed during periadolescence.
Richard L. Bell, Zachary A. Rodd, Caron L. Boutwell, Cathleen C. Hsu, Lawrence Lumeng, James M. Murphy, Ting-Kai Li, and William J. McBride. “Effects of long-term episodic access to ethanol on the expression of an alcohol deprivation effect in low alcohol-consuming rats.” Alcoholism, Clinical and Experimental Research, 28, 12, Pp. 1867–1874. Abstract
BACKGROUND: The alcohol-preferring (P) and -nonpreferring (NP) and high alcohol-drinking (HAD) and low alcohol-drinking (LAD) rats have been selectively bred for divergent preference for ethanol over water. In addition, both P and HAD rats display an alcohol deprivation effect (ADE). This study was undertaken to test whether the NP, LAD-1, and LAD-2 lines of rats could display an ADE as well. METHOD: Adult female NP, LAD-1, and LAD-2 rats were given concurrent access to multiple concentrations of ethanol [5, 10, 15% (v/v)] and water in an ADE paradigm involving an initial 6 weeks of 24-hr access to ethanol, followed by four cycles of 2 weeks of deprivation from and 2 weeks of re-exposure to ethanol (5, 10, and 15%). A control group had continuous access to the ethanol concentrations (5, 10, and 15%) and water through the end of the fourth re-exposure period. RESULTS: For NP rats, a preference for the highest ethanol concentration (15%) was evident by the end of the fifth week of access (approximately 60% of total ethanol fluid intake). Contrarily, LAD rats did not display a marked preference for any one concentration of ethanol. All three lines displayed an ADE after repeated cycles of re-exposure to ethanol, with the general ranking of intake being LAD-1 \textgreater NP \textgreater LAD-2 (e.g., for the first day of reinstatement of the third re-exposure cycle, intakes were 6.5, 2.9, and 2.4 g/kg/day compared with baseline values of 3.1, 2.0, and 1.3 g/kg/day for each line, respectively). By the 13th week, rats from all three lines, with a ranking of LAD-1 \textgreater NP \textgreater LAD-2, were drinking more ethanol (3.3, 2.2, and 2.0 g/kg/day, respectively) compared with their consumption during the first week of access (approximately 1.1 g/kg/day for all three lines). CONCLUSION: These data indicate that access to multiple concentrations of ethanol and exposure to multiple deprivation cycles can partially overcome a genetic predisposition of NP, LAD-1, and LAD-2 rats for low alcohol consumption. In addition, the findings suggest that genetic control of low alcohol consumption in rats is not associated with the inability to display an ADE.

Pages