Publications

2014
Changhai Cui, David Shurtleff, and R. Adron Harris. “Neuroimmune mechanisms of alcohol and drug addiction.” International Review of Neurobiology, 118, Pp. 1–12. Abstract
Alcohol and other drugs of abuse have significant impacts on the neuroimmune system. Studies have demonstrated that drugs of abuse interact with the neuroimmune system and alter neuroimmune gene expression and signaling, which in turn contribute to various aspects of addiction. As the key component of the CNS immune system, neuroimmune factors mediate neuroinflammation and modulate a wide range of brain function including neuronal activity, endocrine function, and CNS development. These neuromodulatory properties of immune factors, together with their essential role in neuroinflammation, provide a new framework to understand neuroimmune mechanisms mediating brain functional and behavioral changes contributing to addiction. This chapter highlights recent advances in understanding neuroimmune changes associated with exposure to alcohol and other drugs of abuse, including opiates, marijuana, methamphetamine, and cocaine. It provides a brief overview on what we know about neuroimmune signaling and its role in drug action and addiction.
Gizelle Robinson, Dana Most, Laura B. Ferguson, Jody Mayfield, R. Adron Harris, and Yuri A. Blednov. “Neuroimmune pathways in alcohol consumption: evidence from behavioral and genetic studies in rodents and humans.” International Review of Neurobiology, 118, Pp. 13–39. Abstract
Immune or brain proinflammatory signaling has been linked to some of the behavioral effects of alcohol. Immune signaling appears to regulate voluntary ethanol intake in rodent models, and ethanol intake activates the immune system in multiple models. This bidirectional link raises the possibility that consumption increases immune signaling, which in turn further increases consumption in a feed-forward cycle. Data from animal and human studies provide overlapping support for the involvement of immune-related genes and proteins in alcohol action, and combining animal and human data is a promising approach to systematically evaluate and nominate relevant pathways. Based on rodent models, neuroimmune pathways may represent unexplored, nontraditional targets for medication development to reduce alcohol consumption and prevent relapse. Peroxisome proliferator-activated receptor agonists are one class of anti-inflammatory medications that demonstrate antiaddictive properties for alcohol and other drugs of abuse. Expression of immune-related genes is altered in animals and humans following chronic alcohol exposure, and the regulatory influences of specific mRNAs, microRNAs, and activated cell types are areas of intense study. Ultimately, the use of multiple datasets combined with behavioral validation will be needed to link specific neuroimmune pathways to addiction vulnerability.
Leandro F. Vendruscolo and Amanda J. Roberts. “Operant alcohol self-administration in dependent rats: focus on the vapor model.” Alcohol (Fayetteville, N.Y.), 48, 3, Pp. 277–286. Abstract
Alcoholism (alcohol dependence) is characterized by a compulsion to seek and ingest alcohol (ethanol), loss of control over intake, and the emergence of a negative emotional state during withdrawal. Animal models are critical in promoting our knowledge of the neurobiological mechanisms underlying alcohol dependence. Here, we review the studies involving operant alcohol self-administration in rat models of alcohol dependence and withdrawal with the focus on the alcohol vapor model. In 1996, the first articles were published reporting that rats made dependent on alcohol by exposure to alcohol vapors displayed increased operant alcohol self-administration during acute withdrawal compared with nondependent rats (i.e., not exposed to alcohol vapors). Since then, it has been repeatedly demonstrated that this model reliably produces physical and motivational symptoms of alcohol dependence. The functional roles of various systems implicated in stress and reward, including opioids, dopamine, corticotropin-releasing factor (CRF), glucocorticoids, neuropeptide Y (NPY), γ-aminobutyric acid (GABA), norepinephrine, and cannabinoids, have been investigated in the context of alcohol dependence. The combination of models of alcohol withdrawal and dependence with operant self-administration constitutes an excellent tool to investigate the neurobiology of alcoholism. In fact, this work has helped lay the groundwork for several ongoing clinical trials for alcohol dependence. Advantages and limitations of this model are discussed, with an emphasis on what future directions of great importance could be.
Kelle M. Franklin, Liana Asatryan, Michael W. Jakowec, James R. Trudell, Richard L. Bell, and Daryl L. Davies. “P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders.” Frontiers in Neuroscience, 8, Pp. 176. Abstract
Alcohol use disorders (AUDs) have a staggering socioeconomic impact. Few therapeutic options are available, and they are largely inadequate. These shortcomings highlight the urgent need to develop effective medications to prevent and/or treat AUDs. A critical barrier is the lack of information regarding the molecular target(s) by which ethanol (EtOH) exerts its pharmacological activity. This review highlights findings implicating P2X4 receptors (P2X4Rs) as a target for the development of therapeutics to treat AUDs and discusses the use of ivermectin (IVM) as a potential clinical tool for treatment of AUDs. P2XRs are a family of ligand-gated ion channels (LGICs) activated by extracellular ATP. Of the P2XR subtypes, P2X4Rs are expressed the most abundantly in the CNS. Converging evidence suggests that P2X4Rs are involved in the development and progression of AUDs. First, in vitro studies report that pharmacologically relevant EtOH concentrations can negatively modulate ATP-activated currents. Second, P2X4Rs in the mesocorticolimbic dopamine system are thought to play a role in synaptic plasticity and are located ideally to modulate brain reward systems. Third, alcohol-preferring (P) rats have lower functional expression of the p2rx4 gene than alcohol-non-preferring (NP) rats suggesting an inverse relationship between alcohol intake and P2X4R expression. Similarly, whole brain p2rx4 expression has been shown to relate inversely to innate 24 h alcohol preference across 28 strains of rats. Fourth, mice lacking the p2rx4 gene drink more EtOH than wildtype controls. Fifth, IVM, a positive modulator of P2X4Rs, antagonizes EtOH-mediated inhibition of P2X4Rs in vitro and reduces EtOH intake and preference in vivo. These findings suggest that P2X4Rs contribute to EtOH intake. The present review summarizes recent findings focusing on the P2X4R as a molecular target of EtOH action, its role in EtOH drinking behavior and modulation of its activity by IVM as a potential therapy for AUDs.
Laura B. Ferguson, Dana Most, Yuri A. Blednov, and R. Adron Harris. “PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.” Neuropharmacology, 86, Pp. 397–407. Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior.
Qiang Li, Roger Madison, and Scott D. Moore. “Presynaptic BK channels modulate ethanol-induced enhancement of GABAergic transmission in the rat central amygdala nucleus.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34, 41, Pp. 13714–13724. Abstract
Large-conductance calcium-activated potassium BK channels are widely expressed in the brain and are involved in the regulation of neuronal functions such as neurotransmitter release. However, their possible role in mediating ethanol-induced GABA release is still unknown. We assessed the role of BK channels in modulating the action of ethanol on inhibitory synaptic transmission mediated via GABAA receptors in the rat central nucleus of the amygdala (CeA). Evoked IPSCs (eIPSCs) mediated by GABAA receptors were isolated from CeA neurons under whole-cell voltage clamp, and their response to selective BK channel antagonists, channel activators, or ethanol was analyzed. Blocking BK channels with the specific BK channel antagonist paxilline significantly increased the mean amplitude of eIPSCs, whereas the activation of BK channels with the channel opener NS1619 reversibly attenuated the mean amplitude of eIPSCs. Ethanol (50 mM) alone enhanced the amplitude of eIPSCs but failed to further enhance eIPSCs in the slices pretreated with paxilline. Bath application of either BK channel blockers significantly increased the frequency of miniature IPSCs (mIPSCs). Similarly, 50 mM ethanol alone also enhanced mIPSC frequency. Increases in mIPSC frequency by either selective BK channel antagonists or ethanol were not accompanied with changes in the amplitude of mIPSCs. Furthermore, following bath application of BK channel blockers for 10 min, ethanol failed to further increase mIPSC frequency. Together, these results suggest that blocking BK channels mimics the effects of ethanol on GABA release and that presynaptic BK channels could serve as a target for ethanol effects in CeA.
J. C. Crabbe, P. Metten, J. K. Belknap, S. E. Spence, A. J. Cameron, J. P. Schlumbohm, L. C. Huang, A. M. Barkley-Levenson, M. M. Ford, and T. J. Phillips. “Progress in a replicated selection for elevated blood ethanol concentrations in HDID mice.” Genes, Brain, and Behavior, 13, 2, Pp. 236–246. Abstract
Drinking in the dark (DID) is a limited access ethanol-drinking phenotype in mice. High Drinking in the Dark (HDID-1) mice have been bred for 27 selected generations (S27) for elevated blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol. A second replicate line (HDID-2) was started later from the same founder population and is currently in S20. An initial report of response to selection in HDID-1 was published after S11. This article reports genetic and behavioral characteristics of both lines in comparison with the HS controls. Heritability is low in both replicates (h(2)  = 0.09) but the lines have shown 4-5 fold increases in BEC since S0; 80% of HDID-1 and 60% of HDID-2 mice reach BECs greater than 1.0 mg/ml. Several hours after a DID test, HDID mice show mild signs of withdrawal. Although not considered during selection, intake of ethanol (g/kg) during the DID test increased by approximately 80% in HDID-1 and 60% in HDID-2. Common genetic influences were more important than environmental influences in determining the similarity between BEC and intake for HDID mice. Analysis of the partitioning of intake showed that 60% of intake is concentrated in the last 2 h of the 4 h session. However, this has not changed during selection. Hourly BECs during the DID test reach peak levels after 3 or 4 h of drinking. HDID mice do not differ from HS mice in their rate of elimination of an acute dose of alcohol.
Giorgio Gorini, R. Adron Harris, and R. Dayne Mayfield. “Proteomic approaches and identification of novel therapeutic targets for alcoholism.” Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 39, 1, Pp. 104–130. Abstract
Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction.
Natalie M. Zahr, Dirk Mayer, Torsten Rohlfing, Oliver Hsu, Shara Vinco, Juan Orduna, Richard Luong, Richard L. Bell, Edith V. Sullivan, and Adolf Pfefferbaum. “Rat strain differences in brain structure and neurochemistry in response to binge alcohol.” Psychopharmacology, 231, 2, Pp. 429–445. Abstract
RATIONALE: Ventricular enlargement is a robust phenotype of the chronically dependent alcoholic human brain, yet the mechanism of ventriculomegaly is unestablished. Heterogeneous stock Wistar rats administered binge EtOH (3 g/kg intragastrically every 8 h for 4 days to average blood alcohol levels (BALs) of 250 mg/dL) demonstrate profound but reversible ventricular enlargement and changes in brain metabolites (e.g., N-acetylaspartate (NAA) and choline-containing compounds (Cho)). OBJECTIVES: Here, alcohol-preferring (P) and alcohol-nonpreferring (NP) rats systematically bred from heterogeneous stock Wistar rats for differential alcohol drinking behavior were compared with Wistar rats to determine whether genetic divergence and consequent morphological and neurochemical variation affect the brain's response to binge EtOH treatment. METHODS: The three rat lines were dosed equivalently and approached similar BALs. Magnetic resonance imaging and spectroscopy evaluated the effects of binge EtOH on brain. RESULTS: As observed in Wistar rats, P and NP rats showed decreases in NAA. Neither P nor NP rats, however, responded to EtOH intoxication with ventricular expansion or increases in Cho levels as previously noted in Wistar rats. Increases in ventricular volume correlated with increases in Cho in Wistar rats. CONCLUSIONS: The latter finding suggests that ventricular volume expansion is related to adaptive changes in brain cell membranes in response to binge EtOH. That P and NP rats responded differently to EtOH argues for intrinsic differences in their brain cell membrane composition. Further, differential metabolite responses to EtOH administration by rat strain implicate selective genetic variation as underlying heterogeneous effects of chronic alcoholism in the human condition.
Armando G. Salinas, Chinh T. Q. Nguyen, Dara Ahmadi-Tehrani, and Richard A. Morrisett. “Reduced ethanol consumption and preference in cocaine- and amphetamine-regulated transcript (CART) knockout mice.” Addiction Biology, 19, 2, Pp. 175–184. Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide implicated in addiction to drugs of abuse. Several studies have characterized the role of CART in addiction to psychostimulants, but few have examined the role of CART in alcohol use disorders including alcoholism. The current study utilized a CART knockout (KO) mouse model to investigate the role of CART in ethanol appetitive behaviors. A two-bottle choice, unlimited-access paradigm was used to compare ethanol appetitive behaviors between CART wild type (WT) and KO mice. The mice were presented with an ethanol solution (3%-21%) and water, each concentration for 4 days, and their consumption was measured daily. Consumption of quinine (bitter) and saccharin (sweet) solutions was measured following the ethanol preference tests. In addition, ethanol metabolism rates and ethanol sensitivity were compared between genotypes. CART KO mice consumed and preferred ethanol less than their WT counterparts in both sexes. This genotype effect could not be attributed to differences in bitter or sweet taste perception or ethanol metabolism rates. There was also no difference in ethanol sensitivity in male mice; however, CART KO female mice showed a greater ethanol sensitivity than the WT females. Taken together, these data demonstrate a role for CART in ethanol appetitive behaviors and as a possible therapeutic drug target for alcoholism and abstinence enhancement.
Jamie E. Toalston, Gerald A. Deehan, Sheketha R. Hauser, Eric A. Engleman, Richard L. Bell, James M. Murphy, William A. Truitt, William J. McBride, and Zachary A. Rodd. “Reinforcing properties and neurochemical response of ethanol within the posterior ventral tegmental area are enhanced in adulthood by periadolescent ethanol consumption.” The Journal of Pharmacology and Experimental Therapeutics, 351, 2, Pp. 317–326. Abstract
Alcohol drinking during adolescence is associated with increased alcohol drinking and alcohol dependence in adulthood. Research examining the biologic consequences of adolescent ethanol (EtOH) consumption on the response to EtOH in the neurocircuitry shown to regulate drug reinforcement is limited. The experiments were designed to determine the effects of periadolescent alcohol drinking on the reinforcing properties of EtOH within the posterior ventral tegmental area (pVTA) and the ability of EtOH microinjected into the pVTA to stimulate dopamine (DA) release in the nucleus accumbens shell (AcbSh). EtOH access (24-hour free-choice) by alcohol-preferring rats occurred during postnatal days (PND) 30-60. Animals were tested for their response to EtOH after PND 85. Intracranial self-administration techniques were performed to assess EtOH self-infusion into the pVTA. In the second experiment, rats received microinjections of EtOH into the pVTA, and dialysis samples were collected from the AcbSh. The results indicate that in rats that consumed EtOH during adolescence, the pVTA was more sensitive to the reinforcing effects of EtOH (a lower concentration of EtOH supported self-administration) and the ability of EtOH microinjected into the pVTA to stimulate DA release in the AcbSh was enhanced (sensitivity and magnitude). The data indicate that EtOH consumption during adolescence altered the mesolimbic DA system to be more sensitive and responsive to EtOH. This increase in the response to EtOH within the mesolimbic DA during adulthood could be part of biologic sequelae that are the basis for the deleterious effects of adolescent alcohol consumption on the rate of alcoholism during adulthood.
Sean P. Farris and R. Dayne Mayfield. “RNA-Seq reveals novel transcriptional reorganization in human alcoholic brain.” International Review of Neurobiology, 116, Pp. 275–300. Abstract
DNA microarrays have been used for over a decade to profile gene expression on a genomic scale. While this technology has advanced our understanding of complex cellular function, the reliance of microarrays on hybridization kinetics results in several technical limitations. For example, knowledge of the sequences being probed is required, distinguishing similar sequences is difficult because of cross-hybridization, and the relatively narrow dynamic range of the signal limits sensitivity. Recently, new technologies have been introduced that are based on novel sequencing methodologies. These next-generation sequencing methods do not have the limitations inherent to microarrays. Next-generation sequencing is unique since it allows the detection of all known and novel RNAs present in biological samples without bias toward known transcripts. In addition, the expression of coding and noncoding RNAs, alternative splicing events, and expressed single nucleotide polymorphisms (SNPs) can be identified in a single experiment. Furthermore, this technology allows for remarkably higher throughput while lowering sequencing costs. This significant shift in throughput and pricing makes low-cost access to whole genomes possible and more importantly expands sequencing applications far beyond traditional uses (Morozova & Marra, 2008) to include sequencing the transcriptome (RNA-Seq), providing detail on gene structure, alternative splicing events, expressed SNPs, and transcript size (Mane et al., 2009; Tang et al., 2009; Walter et al., 2009), in a single experiment, while also quantifying the absolute abundance of genes, all with greater sensitivity and dynamic range than the competing cDNA microarray technology (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008).
John C. Crabbe. “Rodent models of genetic contributions to motivation to abuse alcohol.” Nebraska Symposium on Motivation. Nebraska Symposium on Motivation, 61, Pp. 5–29. Abstract
In summary, there are remarkably few studies focused on the genetic contributions to alcohol's reinforcing values. Almost all such studies examine the two-bottle preference test. Despite the deficiencies I have raised in its interpretation, a rodent genotype's willingness to drink ethanol when water is freely available offers a reasonable aggregate estimate of alcohol's reinforcing value relative to other genotypes (Green and Grahame 2008). As indicated above, however, preference drinking studies will likely never avoid the confounding role of taste preferences and most often yield intake levels not sufficient to yield a pharmacologically significant BAL. Thus, the quest for improved measures of reinforcing value continues. Of the potential motivational factors considered by McClearn in his seminal review in this series, we can safely conclude that rodent alcohol drinking is not primarily directed at obtaining calories. The role of taste (and odor) remains a challenge. McClearn appears to have been correct that especially those genotypes that avoid alcohol are probably doing so based on preingestive sensory cues; however, postingestive consequences are also important. Cunningham's intragastric model shows the role of both preingestional and postingestional modulating factors for the best known examples, the usually nearly absolutely alcohol-avoiding DBA/2J and HAP-2 mice. Much subsequent data reinforce McClearn's earlier conclusion that C57BL/6J mice, at least, do not regulate their intake around a given self-administered dose of alcohol by adjusting their intake. This leaves us with the puzzle of why nearly all genotypes, even those directionally selectively bred for high voluntary intake for many generations, fail to self-administer intoxicating amounts of alcohol. Since McClearn's review, many ingenious assays to index alcohol's motivational effects have been used extensively, and new methods for inducing dependence have supplanted the older ones prevalent in 1968. I have tried to identify promising areas where the power of genetics could be fruitfully harvested and generally feel that we have a much more clear idea now about some important experiments remaining to be performed.
Richard L. Bell, Zachary A. Rodd, Eric A. Engleman, Jamie E. Toalston, and William J. McBride. “Scheduled access alcohol drinking by alcohol-preferring (P) and high-alcohol-drinking (HAD) rats: modeling adolescent and adult binge-like drinking.” Alcohol (Fayetteville, N.Y.), 48, 3, Pp. 225–234. Abstract
Binge alcohol drinking continues to be a public health concern among today's youth and young adults. Moreover, an early onset of alcohol use, which usually takes the form of binge drinking, is associated with a greater risk for developing alcohol use disorders. Given this, it is important to examine this behavior in rat models of alcohol abuse and dependence. Toward that end, the objective of this article is to review findings on binge-like drinking by selectively bred alcohol-preferring (P) and high-alcohol-drinking (HAD) lines of rats. As reviewed elsewhere in this special issue, the P line meets all, and the HAD line meets most, of the proposed criteria for an animal model of alcoholism. One model of binge drinking is scheduled ethanol access during the dark cycle, which has been used by our laboratory for over 20 years. Our laboratory has also adopted a protocol involving the concurrent presentation of multiple ethanol concentrations. When this protocol is combined with limited access, ethanol intake is maximized yielding blood ethanol levels (BELs) in excess, sometimes greatly in excess, of 80 mg%. By extending these procedures to include multiple scheduled ethanol access sessions during the dark cycle for 5 consecutive days/week, P and HAD rats consume in 3 or 4 h as much as, if not more than, the amount usually consumed in a 24 h period. Under certain conditions, using the multiple scheduled access procedure, BELs exceeding 200 mg% can be achieved on a daily basis. An overview of findings from studies with other selectively bred, inbred, and outbred rats places these findings in the context of the existing literature. Overall, the findings support the use of P and HAD rats as animal models to study binge-like alcohol drinking and reveal that scheduled access procedures will significantly increase ethanol intake by other rat lines and strains as well.
Rebecca J. Howard, James R. Trudell, and R. Adron Harris. “Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics.” Pharmacological Reviews, 66, 2, Pp. 396–412. Abstract
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.
Dinorah Leyva-Illades, Pan Chen, Charles E. Zogzas, Steven Hutchens, Jonathan M. Mercado, Caleb D. Swaim, Richard A. Morrisett, Aaron B. Bowman, Michael Aschner, and Somshuvra Mukhopadhyay. “SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34, 42, Pp. 14079–14095. Abstract
Manganese (Mn) is an essential metal, but elevated cellular levels are toxic and may lead to the development of an irreversible parkinsonian-like syndrome that has no treatment. Mn-induced parkinsonism generally occurs as a result of exposure to elevated Mn levels in occupational or environmental settings. Additionally, patients with compromised liver function attributable to diseases, such as cirrhosis, fail to excrete Mn and may develop Mn-induced parkinsonism in the absence of exposure to elevated Mn. Recently, a new form of familial parkinsonism was reported to occur as a result of mutations in SLC30A10. The cellular function of SLC30A10 and the mechanisms by which mutations in this protein cause parkinsonism are unclear. Here, using a combination of mechanistic and functional studies in cell culture, Caenorhabditis elegans, and primary midbrain neurons, we show that SLC30A10 is a cell surface-localized Mn efflux transporter that reduces cellular Mn levels and protects against Mn-induced toxicity. Importantly, mutations in SLC30A10 that cause familial parkinsonism blocked the ability of the transporter to traffic to the cell surface and to mediate Mn efflux. Although expression of disease-causing SLC30A10 mutations were not deleterious by themselves, neurons and worms expressing these mutants exhibited enhanced sensitivity to Mn toxicity. Our results provide novel insights into the mechanisms involved in the onset of a familial form of parkinsonism and highlight the possibility of using enhanced Mn efflux as a therapeutic strategy for the potential management of Mn-induced parkinsonism, including that occurring as a result of mutations in SLC30A10.
Dana Most, Emily Workman, and R. Adron Harris. “Synaptic adaptations by alcohol and drugs of abuse: changes in microRNA expression and mRNA regulation.” Frontiers in Molecular Neuroscience, 7, Pp. 85. Abstract
Local translation of mRNAs is a mechanism by which cells can rapidly remodel synaptic structure and function. There is ample evidence for a role of synaptic translation in the neuroadaptations resulting from chronic drug use and abuse. Persistent and coordinated changes of many mRNAs, globally and locally, may have a causal role in complex disorders such as addiction. In this review we examine the evidence that translational regulation by microRNAs drives synaptic remodeling and mRNA expression, which may regulate the transition from recreational to compulsive drug use. microRNAs are small, non-coding RNAs that control the translation of mRNAs in the cell and within spatially restricted sites such as the synapse. microRNAs typically repress the translation of mRNAs into protein by binding to the 3'UTR of their targets. As 'master regulators' of many mRNAs, changes in microRNAs could account for the systemic alterations in mRNA and protein expression observed with drug abuse and dependence. Recent studies indicate that manipulation of microRNAs affects addiction-related behaviors such as the rewarding properties of cocaine, cocaine-seeking behavior, and self-administration rates of alcohol. There is limited evidence, however, regarding how synaptic microRNAs control local mRNA translation during chronic drug exposure and how this contributes to the development of dependence. Here, we discuss research supporting microRNA regulation of local mRNA translation and how drugs of abuse may target this process. The ability of synaptic microRNAs to rapidly regulate mRNAs provides a discrete, localized system that could potentially be used as diagnostic and treatment tools for alcohol and other addiction disorders.
John C. Crabbe. “Use of animal models of alcohol-related behavior.” Handbook of Clinical Neurology, 125, Pp. 71–86. Abstract
Alcoholism (alcohol dependence and alcohol use disorder, AUD) is quintessentially behavioral in nature. AUD is behaviorally and genetically complex. This review discusses behavioral assessment of alcohol sensitivity, tolerance, dependence, withdrawal, and reinforcement. The focus is on using laboratory animal models to explore genetic contributions to individual differences in alcohol responses. Rodent genetic animal models based on selective breeding for high vs low alcohol response, and those based on the use of inbred strains, are reviewed. Genetic strategies have revealed the complexity of alcohol responses where genetic influences on multiple alcohol-related behaviors are mostly discrete. They have also identified areas where genetic influences are consistent across behavioral assays and have been used to model genetic differences among humans at different risk for AUD.
Taryn E. Grieder, Melissa A. Herman, Candice Contet, Laura A. Tan, Hector Vargas-Perez, Ami Cohen, Michal Chwalek, Geith Maal-Bared, John Freiling, Joel E. Schlosburg, Laura Clarke, Elena Crawford, Pascale Koebel, Vez Repunte-Canonigo, Pietro P. Sanna, Andrew R. Tapper, Marisa Roberto, Brigitte L. Kieffer, Paul E. Sawchenko, George F. Koob, Derek van der Kooy, and Olivier George. “VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation.” Nature Neuroscience, 17, 12, Pp. 1751–1758. Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) are well known for mediating the positive reinforcing effects of drugs of abuse. Here we identify in rodents and humans a population of VTA dopaminergic neurons expressing corticotropin-releasing factor (CRF). We provide further evidence in rodents that chronic nicotine exposure upregulates Crh mRNA (encoding CRF) in dopaminergic neurons of the posterior VTA, activates local CRF1 receptors and blocks nicotine-induced activation of transient GABAergic input to dopaminergic neurons. Local downregulation of Crh mRNA and specific pharmacological blockade of CRF1 receptors in the VTA reversed the effect of nicotine on GABAergic input to dopaminergic neurons, prevented the aversive effects of nicotine withdrawal and limited the escalation of nicotine intake. These results link the brain reward and stress systems in the same brain region to signaling of the negative motivational effects of nicotine withdrawal.
Adolf Pfefferbaum, Margaret J. Rosenbloom, Weiwei Chu, Stephanie A. Sassoon, Torsten Rohlfing, Kilian M. Pohl, Natalie M. Zahr, and Edith V. Sullivan. “White matter microstructural recovery with abstinence and decline with relapse in alcohol dependence interacts with normal ageing: a controlled longitudinal DTI study.” The Lancet. Psychiatry, 1, 3, Pp. 202–212. Abstract
BACKGROUND: Alcohol dependence exacts a toll on brain white matter microstructure, which has the potential of repair with prolonged sobriety. Diffusion tensor imaging (DTI) enables in-vivo quantification of tissue constituents and localisation of tracts potentially affected in alcohol dependence and its recovery. We did an extended longitudinal study of alcoholism's trajectory of effect on selective fibre bundles with sustained sobriety or decline with relapse. METHODS: Participants were drawn from a longitudinal, 1·5T DTI database of 841 scans of individuals with various medical or neuropsychiatric conditions and normal ageing. Participants diagnosed with alcohol dependence had to meet the criteria from DSM-IV for alcohol dependence. Controls were screened and free of any DSM-IV axis I diagnosis, including being without history of alcohol or drug abuse or dependence. Tract-based spatial statistics (TBSS) quantified white matter integrity throughout the brain in 47 alcohol-dependent individuals and 56 controls examined 2-5 times over 1-8 year intervals. We identified regions showing group differences with a white matter atlas. For macrostructural comparison, we measured corpus callosum and centrum semiovale volumes on MRI. FINDINGS: This study took place in the USA, between June 23, 2000, and Sept 6, 2011. TBSS identified a large cluster (threshold p\textless0·001), where controls showed significant fractional anisotropy (FA) decrease with ageing and alcohol-dependent individuals had significantly lower FA than controls regardless of age. Over the examination interval, 27 (57%) alcohol-dependent individuals abstained, ten (21%) relapsed into light drinking, and ten (21%) relapsed into heavy drinking (\textgreater5 kg of alcohol/year). Despite abnormally low FA, age trajectories of the abstainers were positive and progressing toward normality, whereas those of the relapsers and controls were negative. Axial diffusivity (lower values indexing myelin integrity) was abnormally high in the total alcohol-dependent group; however, the abstainers' slopes paralleled those of controls, whereas the heavy-drinking relapsers' slopes showed accelerated ageing. Callosal genu and body microstructure but not macrostructure showed untoward alcohol-related effects. Affected projection and association tracts had an anterior and superior neuroanatomical distribution. INTERPRETATION: Return to heavy drinking resulted in accelerating microstructural white matter damage. Despite evidence for damage, alcohol-dependent individuals maintaining sobriety over extended periods showed improvement in brain fibre tract integrity reflective of fibre reorganisation and myelin restoration, indicative of a neural mechanism explaining recovery. FUNDING: US National Institute on Alcohol Abuse and Alcoholism (AA012388, AA017168, AA005965, AA013521-INIA).

Pages