Publications

2013
John C. Crabbe, Kenneth S. Kendler, and Robert J. Hitzemann. “Modeling the diagnostic criteria for alcohol dependence with genetic animal models.” Current Topics in Behavioral Neurosciences, 13, Pp. 187–221. Abstract
A diagnosis of alcohol dependence (AD) using the DSM-IV-R is categorical, based on an individual's manifestation of three or more symptoms from a list of seven. AD risk can be traced to both genetic and environmental sources. Most genetic studies of AD risk implicitly assume that an AD diagnosis represents a single underlying genetic factor. We recently found that the criteria for an AD diagnosis represent three somewhat distinct genetic paths to individual risk. Specifically, heavy use and tolerance versus withdrawal and continued use despite problems reflected separate genetic factors. However, some data suggest that genetic risk for AD is adequately described with a single underlying genetic risk factor. Rodent animal models for alcohol-related phenotypes typically target discrete aspects of the complex human AD diagnosis. Here, we review the literature derived from genetic animal models in an attempt to determine whether they support a single-factor or multiple-factor genetic structure. We conclude that there is modest support in the animal literature that alcohol tolerance and withdrawal reflect distinct genetic risk factors, in agreement with our human data. We suggest areas where more research could clarify this attempt to align the rodent and human data.
Pierre-Eric Lutz and Brigitte L. Kieffer. “The multiple facets of opioid receptor function: implications for addiction.” Current Opinion in Neurobiology, 23, 4, Pp. 473–479. Abstract
Addiction is characterized by altered reward processing, disrupted emotional responses and poor decision-making. Beyond a central role in drug reward, increasing evidence indicate that opioid receptors are broadly involved in all these processes. Recent studies establish the mu opioid receptor as a main player in social reward, which attracts increasing attention in psychiatric research. There is growing interest in blocking the kappa opioid receptor to prevent relapse, and alleviate the negative affect of withdrawal. The delta opioid receptor emerges as a potent mood enhancer, whose involvement in addiction is less clear. All three opioid receptors are likely implicated in addiction-depression comorbidity, and understanding of their roles in cognitive deficits associated to drug abuse is only beginning.
Lindsay M. McCracken, Yuri A. Blednov, James R. Trudell, Jillian M. Benavidez, Heinrich Betz, and R. Adron Harris. “Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.” The Journal of Pharmacology and Experimental Therapeutics, 344, 2, Pp. 489–500. Abstract
Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.
Giorgio Gorini, Amanda J. Roberts, and R. Dayne Mayfield. “Neurobiological signatures of alcohol dependence revealed by protein profiling.” PloS One, 8, 12, Pp. e82656. Abstract
Alcohol abuse causes dramatic neuroadaptations in the brain, which contribute to tolerance, dependence, and behavioral modifications. Previous proteomic studies in human alcoholics and animal models have identified candidate alcoholism-related proteins. However, recent evidences suggest that alcohol dependence is caused by changes in co-regulation that are invisible to single protein-based analysis. Here, we analyze global proteomics data to integrate differential expression, co-expression networks, and gene annotations to unveil key neurobiological rearrangements associated with the transition to alcohol dependence modeled by a Chronic Intermittent Ethanol (CIE), two-bottle choice (2BC) paradigm. We analyzed cerebral cortices (CTX) and midbrains (MB) from male C57BL/6J mice subjected to a CIE, 2BC paradigm, which induces heavy drinking and represents one of the best available animal models for alcohol dependence and relapse drinking. CIE induced significant changes in protein levels in dependent mice compared with their non-dependent controls. Multiple protein isoforms showed region-specific differential regulation as a result of post-translational modifications. Our integrative analysis identified modules of co-expressed proteins that were highly correlated with CIE treatment. We found that modules most related to the effects of CIE treatment coordinate molecular imbalances in endocytic- and energy-related pathways, with specific proteins involved, such as dynamin-1. The qRT-PCR experiments validated both differential and co-expression analyses, and the correspondence among our data and previous genomic and proteomic studies in humans and rodents substantiates our findings. The changes identified above may play a key role in the escalation of ethanol consumption associated with dependence. Our approach to alcohol addiction will advance knowledge of brain remodeling mechanisms and adaptive changes in response to drug abuse, contribute to understanding of organizational principles of CTX and MB proteomes, and define potential new molecular targets for treating alcohol addiction. The integrative analysis employed here highlight the advantages of systems approaches in studying the neurobiology of alcohol addiction.
Boris Tabakoff and Paula L. Hoffman. “The neurobiology of alcohol consumption and alcoholism: an integrative history.” Pharmacology, Biochemistry, and Behavior, 113, Pp. 20–37. Abstract
Studies of the neurobiological predisposition to consume alcohol (ethanol) and to transition to uncontrolled drinking behavior (alcoholism), as well as studies of the effects of alcohol on brain function, started a logarithmic growth phase after the repeal of the 18th Amendment to the United States Constitution. Although the early studies were primitive by current technological standards, they clearly demonstrated the effects of alcohol on brain structure and function, and by the end of the 20th century left little doubt that alcoholism is a "disease" of the brain. This review traces the history of developments in the understanding of ethanol's effects on the most prominent inhibitory and excitatory systems of brain (GABA and glutamate neurotransmission). This neurobiological information is integrated with knowledge of ethanol's actions on other neurotransmitter systems to produce an anatomical and functional map of ethanol's properties. Our intent is limited in scope, but is meant to provide context and integration of the actions of ethanol on the major neurobiologic systems which produce reinforcement for alcohol consumption and changes in brain chemistry that lead to addiction. The developmental history of neurobehavioral theories of the transition from alcohol drinking to alcohol addiction is presented and juxtaposed to the neurobiological findings. Depending on one's point of view, we may, at this point in history, know more, or less, than we think we know about the neurobiology of alcoholism.
Jody Mayfield, Laura Ferguson, and R. Adron Harris. “Neuroimmune signaling: a key component of alcohol abuse.” Current Opinion in Neurobiology, 23, 4, Pp. 513–520. Abstract
Molecular and behavioral studies corroborate a pivotal role for the innate immune system in mediating the acute and chronic effects of alcohol and support a neuroimmune hypothesis of alcohol addiction. Changes in expression of neuroimmune genes and microglial transcripts occur in postmortem brain from alcoholics and animals exposed to alcohol, and null mutant animals lacking certain innate immune genes show decreased alcohol-mediated responses. Many of the differentially expressed genes are part of the toll like receptor (TLR) signaling pathway and culminate in an increased expression of pro-inflammatory immune genes. Compounds known to inhibit inflammation, microglial activation, and neuroimmune gene expression have shown promising results in reducing alcohol-mediated behaviors in animal models, indicating that neuroimmune signaling pathways offer unexplored targets in the treatment of alcohol abuse.
Melissa A. Herman, Candice Contet, Nicholas J. Justice, Wylie Vale, and Marisa Roberto. “Novel subunit-specific tonic GABA currents and differential effects of ethanol in the central amygdala of CRF receptor-1 reporter mice.” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 8, Pp. 3284–3298. Abstract
The central nucleus of the amygdala (CeA) is an important integrative site for the reinforcing effects of drugs of abuse, such as ethanol. Activation of corticotropin-releasing factor type 1 (CRF1) receptors in the CeA plays a critical role in the development of ethanol dependence, but these neurons remain uncharacterized. Using CRF1:GFP reporter mice and a combined electrophysiological/immunohistochemical approach, we found that CRF1 neurons exhibit an α1 GABA(A) receptor subunit-mediated tonic conductance that is driven by action potential-dependent GABA release. In contrast, unlabeled CeA neurons displayed a δ subunit-mediated tonic conductance that is enhanced by ethanol. Ethanol increased the firing discharge of CRF1 neurons and decreased the firing discharge of unlabeled CeA neurons. Retrograde tracing studies indicate that CeA CRF1 neurons project into the bed nucleus of the stria terminalis. Together, these data demonstrate subunit-specific tonic signaling and provide mechanistic insight into the specific effects of ethanol on CeA microcircuitry.
Pierre-Eric Lutz and Brigitte L. Kieffer. “Opioid receptors: distinct roles in mood disorders.” Trends in Neurosciences, 36, 3, Pp. 195–206. Abstract
The roles of opioid receptors in pain and addiction have been extensively studied, but their function in mood disorders has received less attention. Accumulating evidence from animal research reveals that mu, delta and kappa opioid receptors (MORs, DORs and KORs, respectively) exert highly distinct controls over mood-related processes. DOR agonists and KOR antagonists have promising antidepressant potential, whereas the risk-benefit ratio of currently available MOR agonists as antidepressants remains difficult to evaluate, in addition to their inherent abuse liability. To date, both human and animal studies have mainly examined MORs in the etiology of depressive disorders, and future studies will address DOR and KOR function in established and emerging neurobiological aspects of depression, including neurogenesis, neurodevelopment, and social behaviors.
Yury O. Nunez, Jay M. Truitt, Giorgio Gorini, Olga N. Ponomareva, Yuri A. Blednov, R. Adron Harris, and R. Dayne Mayfield. “Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence.” BMC genomics, 14, Pp. 725. Abstract
BACKGROUND: Although the study of gene regulation via the action of specific microRNAs (miRNAs) has experienced a boom in recent years, the analysis of genome-wide interaction networks among miRNAs and respective targeted mRNAs has lagged behind. MicroRNAs simultaneously target many transcripts and fine-tune the expression of genes through cooperative/combinatorial targeting. Therefore, they have a large regulatory potential that could widely impact development and progression of diseases, as well as contribute unpredicted collateral effects due to their natural, pathophysiological, or treatment-induced modulation. We support the viewpoint that whole mirnome-transcriptome interaction analysis is required to better understand the mechanisms and potential consequences of miRNA regulation and/or deregulation in relevant biological models. In this study, we tested the hypotheses that ethanol consumption induces changes in miRNA-mRNA interaction networks in the mouse frontal cortex and that some of the changes observed in the mouse are equivalent to changes in similar brain regions from human alcoholics. RESULTS: miRNA-mRNA interaction networks responding to ethanol insult were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA). Important pathways (coexpressed modular networks detected by WGCNA) and hub genes central to the neuronal response to ethanol are highlighted, as well as key miRNAs that regulate these processes and therefore represent potential therapeutic targets for treating alcohol addiction. Importantly, we discovered a conserved signature of changing miRNAs between ethanol-treated mice and human alcoholics, which provides a valuable tool for future biomarker/diagnostic studies in humans. We report positively correlated miRNA-mRNA expression networks that suggest an adaptive, targeted miRNA response due to binge ethanol drinking. CONCLUSIONS: This study provides new evidence for the role of miRNA regulation in brain homeostasis and sheds new light on current understanding of the development of alcohol dependence. To our knowledge this is the first report that activated expression of miRNAs correlates with activated expression of mRNAs rather than with mRNA downregulation in an in vivo model. We speculate that early activation of miRNAs designed to limit the effects of alcohol-induced genes may be an essential adaptive response during disease progression.
Therese A. Kosten and Richard A. Meisch. “Predicting extinction and reinstatement of alcohol and sucrose self-administration in outbred rats.” Experimental and Clinical Psychopharmacology, 21, 3, Pp. 245–251. Abstract
Preventing relapse to drinking or escalation to excessive drinking could be aided by identifying factors that predict these behaviors. Animal models, particularly those that utilize operant self-administration techniques, can be useful. In a prior operant study, we noted a good deal of variability in behaviors during training and test sessions. We utilized data obtained from that study of two groups of rats, trained and tested identically except one responded for alcohol and the other for sucrose, to explore for associations related to relapse (reinstatement) or to excessive drinking (maintenance). Data were obtained from sessions conducted under fixed- and progressive-ratio schedules as well as from extinction and reinstatement sessions. Variables assessed included active and inactive presses, head entries into the dipper trough, and automated recordings of body movements during these sessions as well as alcohol preference before training. First, using multiple regression, we examined whether alcohol preference before training associated with any response variable among alcohol-responding rats. Second, using factor analysis, we identified a training variable, body movements, that associated with responses during tests. Using this measure, rats were divided into low- and high-response groups and compared on active lever presses and head entries across test sessions. Results show that among alcohol-responding rats, alcohol preference predicted head entries during extinction. High-body-movement rats emitted significantly fewer active lever presses and had fewer head entries across test sessions, particularly during reinstatement, compared with low-body-movement rats. Results from this exploratory study provide clues for future experimental studies.
Changhoon Lee, R. Adron Harris, Jason K. Wall, R. Dayne Mayfield, and Claus O. Wilke. “RNaseIII and T4 polynucleotide Kinase sequence biases and solutions during RNA-seq library construction.” Biology Direct, 8, Pp. 16. Abstract
BACKGROUND: RNA-seq is a next generation sequencing method with a wide range of applications including single nucleotide polymorphism (SNP) detection, splice junction identification, and gene expression level measurement. However, the RNA-seq sequence data can be biased during library constructions resulting in incorrect data for SNP, splice junction, and gene expression studies. Here, we developed new library preparation methods to limit such biases. RESULTS: A whole transcriptome library prepared for the SOLiD system displayed numerous read duplications (pile-ups) and gaps in known exons. The pile-ups and gaps of the whole transcriptome library caused a loss of SNP and splice junction information and reduced the quality of gene expression results. Further, we found clear sequence biases for both 5' and 3' end reads in the whole transcriptome library. To remove this bias, RNaseIII fragmentation was replaced with heat fragmentation. For adaptor ligation, T4 Polynucleotide Kinase (T4PNK) was used following heat fragmentation. However, its kinase and phosphatase activities introduced additional sequence biases. To minimize them, we used OptiKinase before T4PNK. Our study further revealed the specific target sequences of RNaseIII and T4PNK. CONCLUSIONS: Our results suggest that the heat fragmentation removed the RNaseIII sequence bias and significantly reduced the pile-ups and gaps. OptiKinase minimized the T4PNK sequence biases and removed most of the remaining pile-ups and gaps, thus maximizing the quality of RNA-seq data.
Ovidiu D. Iancu, Denesa Oberbeck, Priscila Darakjian, Pamela Metten, Shannon McWeeney, John C. Crabbe, and Robert Hitzemann. “Selection for drinking in the dark alters brain gene coexpression networks.” Alcoholism, Clinical and Experimental Research, 37, 8, Pp. 1295–1303. Abstract
BACKGROUND: Heterogeneous stock (HS/NPT) mice have been used to create lines selectively bred in replicate for elevated drinking in the dark (DID). Both selected lines routinely reach a blood ethanol (EtOH) concentration (BEC) of 1.00 mg/ml or greater at the end of the 4-hour period of access in Day 2. The mechanisms through which genetic differences influence DID are currently unclear. Therefore, the current study examines the transcriptome, the first stage at which genetic variability affects neurobiology. Rather than focusing solely on differential expression (DE), we also examine changes in the ways that gene transcripts collectively interact with each other, as revealed by changes in coexpression patterns. METHODS: Naïve mice (N = 48/group) were genotyped using the Mouse Universal Genotyping Array, which provided 3,683 informative markers. Quantitative trait locus (QTL) analysis used a marker-by-marker strategy with the threshold for a significant logarithm of odds (LOD) set at 10.6. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene coexpression network analysis (WGCNA) were implemented largely as described elsewhere. RESULTS: Significant QTLs for elevated BECs after DID were detected on chromosomes 4, 14, and 16; the latter 2 were associated with gene-poor regions. None of the QTLs overlapped with known QTLs for EtOH preference drinking. Ninety-four transcripts were detected as being differentially expressed in both selected lines versus HS controls; there was no overlap with known preference genes. The WGCNA revealed 2 modules as showing significant effects of both selections on intramodular connectivity. A number of genes known to be associated with EtOH phenotypes (e.g., Gabrg1, Glra2, Grik1, Npy2r, and Nts) showed significant changes in connectivity. CONCLUSIONS: We found marked and consistent effects of selection on coexpression patterns; DE changes were more modest and less concordant. The QTLs and differentially expressed genes detected here are distinct from the preference phenotype. This is consistent with behavioral data and suggests that the DID and preference phenotypes are markedly different genetically.
Walter D. McCulley, Sonja Ascheid, John C. Crabbe, and Alan M. Rosenwasser. “Selective breeding for ethanol-related traits alters circadian phenotype.” Alcohol (Fayetteville, N.Y.), 47, 3, Pp. 187–194. Abstract
Previous studies in mice and rats have shown that selective breeding for high and low ethanol preference results in divergence of circadian phenotype in the selected lines. These results indicate that some alleles influencing ethanol preference also contribute to circadian rhythm regulation. Selective breeding has also been used to produce lines of mice differing in a number of other ethanol-related traits, while studies of phenotypic and genetic correlation indicate that diverse ethanol-related traits are influenced by both shared and unshared genetics. In the present study, we examined several features of circadian activity rhythms in a mouse line selected for binge-like drinking and in mouse lines selected for high and low severity of ethanol withdrawal convulsions. Specifically, Experiment 1 compared High Drinking in the Dark (HDID-1) mice to their genetically heterogeneous progenitor line (HS/Npt), and Experiment 2 compared Withdrawal Seizure-Prone (WSP-2) and Withdrawal Seizure-Resistant (WSR-2) mice. Both line pairs displayed differences in their daily activity patterns under light-dark conditions. In addition, HDID-1 mice showed shorter free-running periods in constant light and less coherent activity rhythms across lighting conditions relative to HS/Npt controls, while WSP-2 mice showed longer free-running periods in constant darkness relative to WSR-2 mice. These results strengthen the evidence for genetic linkages between responsiveness to ethanol and circadian regulation, and extend this evidence to include ethanol-related phenotypes other than preference drinking. However, the present results also indicate that the nature of genetic correlations between and within phenotypic domains is highly complex.
Jennifer G. Bray, Kenneth C. Reyes, Amanda J. Roberts, Richard M. Ransohoff, and Donna L. Gruol. “Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression.” Neuropharmacology, 67, Pp. 115–125. Abstract
It has been shown that ethanol exposure can activate astrocytes and microglia resulting in the production of neuroimmune factors, including the chemokine CCL2. The role of these neuroimmune factors in the effects of ethanol on the central nervous system has yet to be elucidated. To address this question, we investigated the effects of ethanol on synaptic transmission and plasticity in the hippocampus from mice that express elevated levels of CCL2 in the brain and their non-transgenic littermate controls. The brains of the transgenic mice simulate one aspect of the alcoholic brain, chronically increased levels of CCL2. We used extracellular field potential recordings in acutely isolated hippocampal slices to identify neuroadaptive changes produced by elevated levels of CCL2 and how these neuroadaptive changes affect the actions of acute ethanol. Results showed that synaptic transmission and the effects of ethanol on synaptic transmission were similar in the CCL2-transgenic and non-transgenic hippocampus. However, long-term potentiation (LTP), a cellular mechanism thought to underlie learning and memory, in the CCL2-transgenic hippocampus was resistant to the ethanol-induced depression of LTP observed in the non-transgenic hippocampus. Consistent with these results, ethanol pretreatment significantly impaired cued and contextual fear conditioning in non-transgenic mice, but had no effect in CCL2-transgenic mice. These data show that chronically elevated levels of CCL2 in the hippocampus produce neuroadaptive changes that block the depressing effects of ethanol on hippocampal synaptic plasticity and support the hypothesis that CCL2 may provide a neuroprotective effect against the devastating actions of ethanol on hippocampal function.
D. Kapfhamer, S. Taylor, M. E. Zou, J. P. Lim, V. Kharazia, and U. Heberlein. “Taok2 controls behavioral response to ethanol in mice.” Genes, Brain, and Behavior, 12, 1, Pp. 87–97. Abstract
Despite recent advances in the understanding of ethanol's biological action, many of the molecular targets of ethanol and mechanisms behind ethanol's effect on behavior remain poorly understood. In an effort to identify novel genes, the products of which regulate behavioral responses to ethanol, we recently identified a mutation in the dtao gene that confers resistance to the locomotor stimulating effect of ethanol in Drosophila. dtao encodes a member of the Ste20 family of serine/threonine kinases implicated in MAP kinase signaling pathways. In this study, we report that conditional ablation of the mouse dtao homolog, Taok2, constitutively and specifically in the nervous system, results in strain-specific and overlapping alterations in ethanol-dependent behaviors. These data suggest a functional conservation of dtao and Taok2 in mediating ethanol's biological action and identify Taok2 as a putative candidate gene for ethanol use disorders in humans.
Christopher L. Cunningham, Tara L. Fidler, Kevin V. Murphy, Jennifer A. Mulgrew, and Phoebe J. Smitasin. “Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal.” Biological Psychiatry, 73, 3, Pp. 249–255. Abstract
BACKGROUND: Drinking to alleviate the symptoms of acute withdrawal is included in diagnostic criteria for alcoholism, but the contribution of acute withdrawal relief to high alcohol intake has been difficult to model in animals. METHODS: Ethanol dependence was induced by passive intragastric ethanol infusions in C57BL/6J (B6) and DBA/2J (D2) mice; nondependent control animals received water infusions. Mice were then allowed to self-administer ethanol or water intragastrically. RESULTS: The time course of acute withdrawal was similar to that produced by chronic ethanol vapor exposure in mice, reaching a peak at 7 to 9 hours and returning to baseline within 24 hours; withdrawal severity was greater in D2 than in B6 mice (experiment 1). Postwithdrawal delays in initial ethanol access (1, 3, or 5 days) reduced the enhancement in later ethanol intake normally seen in D2 (but not B6) mice allowed to self-infuse ethanol during acute withdrawal (experiment 2). The postwithdrawal enhancement of ethanol intake persisted over a 5-day abstinence period in D2 mice (experiment 3). D2 mice allowed to drink ethanol during acute withdrawal drank more ethanol and self-infused more ethanol than nondependent mice (experiment 4). CONCLUSIONS: Alcohol access during acute withdrawal increased later alcohol intake in a time-dependent manner, an effect that may be related to a genetic difference in sensitivity to acute withdrawal. This promising model of negative reinforcement encourages additional research on the mechanisms underlying acute withdrawal relief and its role in determining risk for alcoholism.
Carolyn Ferguson, Matthew McKay, R. Adron Harris, and Gregg E. Homanics. “Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease (TALEN)-mediated gene inactivation.” Alcohol (Fayetteville, N.Y.), 47, 8, Pp. 595–599. Abstract
Genetically engineered mice are a valuable resource for studies of the behavioral effects of ethanol. However, for some behavioral tests of ethanol action, the rat is a superior model organism. Production of genetically engineered rats has been severely hampered due to technical limitations. Here we utilized a promising new technique for efficient site-specific gene modification to create a novel gene knockout rat line. This approach is based on transcriptional activator-like effector nucleases (TALENs). TALENs function in pairs and bind DNA in a sequence-specific manner. Upon binding to the target sequence, a functional nuclease is reconstituted that creates double-stranded breaks in the DNA that are efficiently repaired by non-homologous end joining. This error-prone process often results in deletions of varying lengths at the targeted locus. The toll-like receptor 4 (Tlr4) gene was selected for TALEN-mediated gene inactivation. Tlr4 has been implicated in ethanol-induced neuroinflammation and neurodegeneration, as well as multiple ethanol-induced behavioral effects. To generate Tlr4 knockout rats, a pair of TALEN constructs was created that specifically target Exon 1 immediately downstream of the start of translation. TALEN mRNAs were microinjected into the cytoplasm of one-cell Wistar rat embryos. Of 13 live-born pups that resulted, one harbored a mutation in Exon 1 of Tlr4. The mutated allele consisted of a 13 base-pair deletion that was predicted to create a frameshift mutation after amino acid 25. This founder rat successfully transmitted the mutation to F1 offspring. Heterozygous F1 offspring were interbred to produce homozygous F2 animals. Homozygous mutants expressed the 13-bp deletion in Tlr4 mRNA. In contrast to control rats that produced a robust increase in plasma tumor necrosis factor alpha in response to a lipopolysaccharide challenge, homozygous rats had a markedly attenuated response. Thus, the mutant Tlr4 allele generated by TALEN-mediated gene inactivation represents a null allele. This knockout rat line will be valuable for studies of ethanol action as well as more general inflammatory conditions including septic shock. In conclusion, TALEN-mediated gene targeting in rat zygotes represents an inexpensive, efficient, and rapid method for creating genetically engineered rats.
Lauren A. Vanderlinden, Laura M. Saba, Katerina Kechris, Michael F. Miles, Paula L. Hoffman, and Boris Tabakoff. “Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.” PloS One, 8, 7, Pp. e68878. Abstract
To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA). Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL) with a genomic region that regulates alcohol consumption (bQTL). To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories) and from gene expression data from 6 brain regions (nucleus accumbens (NA); prefrontal cortex (PFC); ventral tegmental area (VTA); striatum (ST); hippocampus (HP); cerebellum (CB)) available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA) and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.
Lindsay M. McCracken, James R. Trudell, Mandy L. McCracken, and R. Adron Harris. “Zinc-dependent modulation of α2- and α3-glycine receptor subunits by ethanol.” Alcoholism, Clinical and Experimental Research, 37, 12, Pp. 2002–2010. Abstract
BACKGROUND: Strychnine-sensitive glycine receptors (GlyRs) are expressed throughout the brain and spinal cord and are among the strongly supported protein targets of alcohol. This is based largely on studies of the α1-subunit; however, α2- and α3-GlyR subunits are as or more abundantly expressed than α1-GlyRs in multiple forebrain brain areas considered to be important for alcohol-related behaviors, and uniquely some α3-GlyRs undergo RNA editing. Nanomolar and low micromolar concentrations of zinc ions potentiate GlyR function, and in addition to zinc's effects on glycine-activated currents, we have recently shown that physiological concentrations of zinc also enhance the magnitude of ethanol (EtOH)'s effects on α1-GlyRs. METHODS: Using 2-electrode voltage-clamp electrophysiology in oocytes expressing either α2- or α3-GlyRs, we first tested the hypothesis that the effects of EtOH on α2- and α3-GlyRs would be zinc dependent, as we have previously reported for α1-GlyRs. Next, we constructed an α3P185L-mutant GlyR to test whether RNA-edited and unedited GlyRs contain differences in EtOH sensitivity. Last, we built a homology model of the α3-GlyR subunit. RESULTS: The effects of EtOH (20 to 200 mM) on both subunits were greater in the presence than in the absence of 500 nM added zinc. The α3P185L-mutation that corresponds to RNA editing increased sensitivity to glycine and decreased sensitivity to EtOH. CONCLUSIONS: Our findings provide further evidence that zinc is important for determining the magnitude of EtOH's effects at GlyRs and suggest that by better understanding zinc/EtOH interactions at GlyRs, we may better understand the sites and mechanisms of EtOH action.

Pages