Publications by Year: 2021

Maja Milanovic, Lisa M Houghton, Demis Menolfi, Ji-hoon Lee, Kenta Yamamoto, Yang Li, Brian J Lee, Jun Xu, Verna M Estes, Dong Wang, Peter J Mckinnon, Tanya T Paull, and Shan Zha. 2021. “The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange.” Cancer Res, 81, 2, Pp. 426-437. Abstract
ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of mice, AtmR3016H ( ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.
Ji-hoon Lee and Tanya T Paull. 2021. “Cellular functions of the protein kinase ATM and their relevance to human disease.” Nat Rev Mol Cell Biol. Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Tanya T Paull. 2021. “DNA damage and regulation of protein homeostasis.” DNA Repair (Amst), 105, Pp. 103155. Abstract
The accumulation of unrepaired DNA lesions is associated with many pathological outcomes in humans, particularly in neurodegenerative diseases and in normal aging. Evidence supporting a causal role for DNA damage in the onset and progression of neurodegenerative disease has come from rare human patients with mutations in DNA damage response genes as well as from model organisms; however, the generality of this relationship in the normal population is unclear. In addition, the relevance of DNA damage in the context of proteotoxic stress-the widely accepted paradigm for pathology during neurodegeneration-is not well understood. Here, observations supporting intertwined roles of DNA damage and proteotoxicity in aging-related neurological outcomes are reviewed, with particular emphasis on recent insights into the relationships between DNA repair and autophagy, the ubiquitin proteasome system, formation of protein aggregates, poly-ADP-ribose polymerization, and transcription-driven DNA lesions.
Kumar Somyajit, Julian Spies, Fabian Coscia, Ufuk Kirik, Maj-Britt Rask, Ji-hoon Lee, Kai John Neelsen, Andreas Mund, Lars Juhl Jensen, Tanya T Paull, Matthias Mann, and Jiri Lukas. 2021. “Homology-directed repair protects the replicating genome from metabolic assaults.” Dev Cell, 56, 4, Pp. 461-477.e7. Abstract
Homology-directed repair (HDR) safeguards DNA integrity under various forms of stress, but how HDR protects replicating genomes under extensive metabolic alterations remains unclear. Here, we report that besides stalling replication forks, inhibition of ribonucleotide reductase (RNR) triggers metabolic imbalance manifested by the accumulation of increased reactive oxygen species (ROS) in cell nuclei. This leads to a redox-sensitive activation of the ATM kinase followed by phosphorylation of the MRE11 nuclease, which in HDR-deficient settings degrades stalled replication forks. Intriguingly, nascent DNA degradation by the ROS-ATM-MRE11 cascade is also triggered by hypoxia, which elevates signaling-competent ROS and attenuates functional HDR without arresting replication forks. Under these conditions, MRE11 degrades daughter-strand DNA gaps, which accumulate behind active replisomes and attract error-prone DNA polymerases to escalate mutation rates. Thus, HDR safeguards replicating genomes against metabolic assaults by restraining mutagenic repair at aberrantly processed nascent DNA. These findings have implications for cancer evolution and tumor therapy.
Yi Zhou and Tanya T Paull. 2021. “Quantifying DNA End Resection in Human Cells.” Methods Mol Biol, 2153, Pp. 59-69. Abstract
DNA double-strand break (DSB) end resection initiates homologous recombination (HR) and is critical for genomic stability. DSB resection has been monitored indirectly in mammalian cells using detection of protein foci or BrdU foci formation, which is dependent on single-stranded DNA (ssDNA) products of resection. Here we describe a quantitative PCR (qPCR)-based assay to directly measure levels of ssDNA intermediates generated by resection at specific DSB sites in human cells, which is more quantitative and precise with respect to the extent and efficiency of resection compared with previous methods. This assay, excluding the time for making the stable cell line expressing the restriction enzyme AsiSI fused to the estrogen receptor hormone-binding domain (ER-AsiSI), can be completed within 3 days.
DNA double-strand breaks can be repaired through ligation-based pathways (non-homologous end-joining) or replication-based pathways (homologous recombination) in eukaryotic cells. The decisions that govern these outcomes are widely viewed as a competition between factors that recognize DNA ends and physically promote association of factors specific to each pathway, commonly known as 'pathway choice'. Here I review recent results in the literature and propose that this decision is better described as a sequential set of binding and end processing events, with non-homologous end joining as the first decision point. Physical association and co-localization of end resection factors with non-homologous end-joining factors suggests that ends are transferred between these complexes, thus the ultimate outcome is not the result of a competition but is more akin to a relay race that is determined by the efficiency of the initial end-joining event and the availability of activated DNA end-processing enzymes.
Claudia Cirotti, Salvatore Rizza, Paola Giglio, Noemi Poerio, Maria Francesca Allega, Giuseppina Claps, Chiara Pecorari, Ji-hoon Lee, Barbara Benassi, Daniela Barilà, Caroline Robert, Jonathan S Stamler, Francesco Cecconi, Maurizio Fraziano, Tanya T Paull, and Giuseppe Filomeni. 2021. “Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress.” EMBO Rep, 22, 1, Pp. e50500. Abstract
The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.
Ji-hoon Lee, Seung W Ryu, Nicolette A Ender, and Tanya T Paull. 2021. “Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency.” Mol Cell, 81, 7, Pp. 1515-1533.e5. Abstract
Loss of the ataxia-telangiectasia mutated (ATM) kinase causes cerebellum-specific neurodegeneration in humans. We previously demonstrated that deficiency in ATM activation via oxidative stress generates insoluble protein aggregates in human cells, reminiscent of protein dysfunction in common neurodegenerative disorders. Here, we show that this process is driven by poly-ADP-ribose polymerases (PARPs) and that the insoluble protein species arise from intrinsically disordered proteins associating with PAR-associated genomic sites in ATM-deficient cells. The lesions implicated in this process are single-strand DNA breaks dependent on reactive oxygen species, transcription, and R-loops. Human cells expressing Mre11 A-T-like disorder mutants also show PARP-dependent aggregation identical to ATM deficiency. Lastly, analysis of A-T patient cerebellum samples shows widespread protein aggregation as well as loss of proteins known to be critical in human spinocerebellar ataxias that is not observed in neocortex tissues. These results provide a hypothesis accounting for loss of protein integrity and cerebellum function in A-T.