Publications by Year: 2009

Wyckoff EE, Boulette ML, Payne SM. Genetics and environmental regulation of Shigella iron transport systems. Biometals. 22 (1) :43-51.Abstract
Shigella spp. have transport systems for both ferric and ferrous iron. The iron can be taken up as free iron or complexed to a variety of carriers. All Shigella species have both the Feo and Sit systems for acquisition of ferrous iron, and all have at least one siderophore-mediated system for transport of ferric iron. Several of the transport systems, including Sit, Iuc/IutA (aerobactin synthesis and transport), Fec (ferric di-citrate uptake), and Shu (heme transport) are encoded within pathogenicity islands. The presence and the genomic locations of these islands vary considerably among the Shigella species, and even between isolates of the same species. The expression of the iron transport systems is influenced by the concentration of iron and by environmental conditions including the level of oxygen. ArcA and FNR regulate iron transport gene expression as a function of oxygen tension, with the sit and iuc promoters being highly expressed in aerobic conditions, while the feo ferrous iron transporter promoter is most active under anaerobic conditions. The effects of oxygen are also seen in infection of cultured cells by Shigella flexneri; the Sit and Iuc systems support plaque formation under aerobic conditions, whereas Feo allows plaque formation anaerobically.
Fisher CR, Davies NMLL, Wyckoff EE, Feng Z, Oaks EV, Payne SM. Genetics and virulence association of the Shigella flexneri sit iron transport system. Infect Immun. 77 (5) :1992-9.Abstract
The sit-encoded iron transport system is present within pathogenicity islands in all Shigella spp. and some pathogenic Escherichia coli strains. The islands contain numerous insertion elements and sequences with homology to bacteriophage genes. The Shigella flexneri sit genes can be lost as a result of deletion within the island. The formation of deletions was dependent upon RecA and occurred at relatively high frequency. This suggests that the sit region is inherently unstable, yet sit genes are maintained in all of the clinical isolates tested. Characterization of the sitABCD genes in S. flexneri indicates that they encode a ferrous iron transport system, although the genes are induced aerobically. The sit genes provide a competitive advantage to S. flexneri growing within epithelial cells, and a sitA mutant is outcompeted by the wild type in cultured epithelial cells. The Sit system is also required for virulence in a mouse lung model. The sitA mutant was able to infect the mice and induce a protective immune response but was avirulent compared to its wild-type parent strain.
Be'er A, Smith RS, Zhang HP, Florin E-L, Payne SM, Swinney HL. Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion. J Bacteriol. 191 (18) :5758-64.Abstract
Most research on growing bacterial colonies on agar plates has concerned the effect of genetic or morphotype variation. Some studies have indicated that there is a correlation between microscopic bacterial motion and macroscopic colonial expansion, especially for swarming strains, but no measurements have been obtained for a single strain to relate the microscopic scale to the macroscopic scale. We examined here a single strain (Paenibacillus dendritiformis type T; tip splitting) to determine both the macroscopic growth of colonies and the microscopic bacterial motion within the colonies. Our multiscale measurements for a variety of growth conditions revealed that motion on the microscopic scale and colonial growth are largely independent. Instead, the growth of the colony is strongly affected by the availability of a surfactant that reduces surface tension.
Roux A, Payne SM, Gilmore MS. Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe. 6 (2) :115-24.Abstract
Bacterial-sensing circuits may be triggered by molecules originating from the environment (e.g., nutrients and chemoattractants). Bacteria also actively probe the environment for information by releasing molecular probes to measure conditions beyond the cell surface: a process known as telesensing. Perceiving the environment beyond is achieved by sensing environmentally induced changes in those probes, as occurs when a siderophore chelates an iron atom or a quorum-sensing signal is inactivated by a specific enzyme or adsorbent. This information, captured by chemical and physical changes induced in specifically produced molecules transiting through the environment, enables bacteria to mount a contextually appropriate response.