Publications by Year: 2016

Stevenson B, Wyckoff EE, Payne SM. Vibrio cholerae FeoA, FeoB, and FeoC Interact To Form a Complex. Journal of Bacteriology [Internet]. 198 (7). Publisher's VersionAbstract
Feo is the major ferrous iron transport system in prokaryotes. Despite having been discovered over 25 years ago and found to be widely distributed among bacteria, Feo is poorly understood, as its structure and mechanism of iron transport have not been determined. The feo operon in Vibrio cholerae is made up of three genes, encoding the FeoA, FeoB, and FeoC proteins, which are all required for Feo system function. FeoA and FeoC are both small cytoplasmic proteins, and their function remains unclear. FeoB, which is thought to function as a ferrous iron permease, is a large integral membrane protein made up of an N-terminal GTPase domain and a C-terminal membrane-spanning region. To date, structural studies of FeoB have been carried out using a truncated form of the protein encompassing only the N-terminal GTPase region. In this report, we show that full-length FeoB forms higher-order complexes when cross-linked in vivo in V. cholerae. Our analysis of these complexes revealed that FeoB can simultaneously associate with both FeoA and FeoC to form a large complex, an observation that has not been reported previously. We demonstrate that interactions between FeoB and FeoA, but not between FeoB and FeoC, are required for complex formation. Additionally, we identify amino acid residues in the GTPase region of FeoB that are required for function of the Feo system and for complex formation. These observations suggest that this large Feo complex may be the active form of Feo that is used for ferrous iron transport.
Fisher CR, Wyckoff EE, Peng ED, Payne SM. Identification and Characterization of a Putative Manganese Export Protein in Vibrio cholerae. Journal of Bacteriology [Internet]. 198 (20). Publisher's VersionAbstract
Manganese plays an important role in the cellular physiology and metabolism of bacterial species, including the human pathogen Vibrio cholerae. The intracellular level of manganese ions is controlled through coordinated regulation of the import and export of this element. We have identified a putative manganese exporter (VC0022), named mneA (manganese exporter A), which is highly conserved among Vibrio spp. An mneA mutant exhibited sensitivity to manganese but not to other cations. Under high-manganese conditions, the mneA mutant showed an almost 50-fold increase in intracellular manganese levels and reduced intracellular iron relative to those of its wild-type parent, suggesting that the mutant's manganese sensitivity is due to the accumulation of toxic levels of manganese and reduced iron. Expression of mneA suppressed the manganese-sensitive phenotype of an Escherichia coli strain carrying a mutation in the nonhomologous manganese export gene, mntP, further supporting a manganese export function for V. cholerae MneA. The level of mneA mRNA was induced approximately 2.5-fold after addition of manganese to the medium, indicating regulation of this gene by manganese. This study offers the first insights into understanding manganese homeostasis in this important pathogen.
Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization. PLoS Pathogens [Internet]. 12 (4). Publisher's VersionAbstract
The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in Vcholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxTompTompU and ctxA. Here, we determine ToxR’s genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode Vcholerae’s major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in Vcholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for Vcholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters.
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev. 80 (1) :69-90.Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.