Publications by Year: 2011

Craig SA, Carpenter CD, Mey AR, Wyckoff EE, Payne SM. Positive regulation of the Vibrio cholerae porin OmpT by iron and fur. J Bacteriol. 2011;193 (23) :6505-11.Abstract
The transcription factor Fur regulates the expression of a number of genes in Vibrio cholerae in response to changes in the level of available iron. Fur usually acts as a repressor, but here we show that Fur positively regulates the expression of ompT, which encodes a major outer membrane porin. OmpT levels increased when the bacteria were grown in medium containing relatively high levels of iron, and this effect required Fur. The level of ompT mRNA also is increased in the presence of iron and Fur. The effect of iron on OmpT levels was independent of the known ompT regulators ToxR and Crp, and it did not require RyhB, which has been shown to be responsible for positive regulation by iron of some V. cholerae genes. Electrophoretic mobility shift assays showed that Fur binds upstream of the ompT transcription start site in a region overlapping known binding sites for ToxR and Crp. These data suggest that Fur and iron positively regulate ompT expression through the direct binding of Fur to the ompT promoter.
Be'er A, Florin E-L, Fisher CR, Swinney HL, Payne SM. Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis. MBio. 2011;2 (3) :e00069-11.Abstract
UNLABELLED: Natural habitats vary in available nutrients and room for bacteria to grow, but successful colonization can lead to overcrowding and stress. Here we show that competing sibling colonies of Paenibacillus dendritiformis bacteria survive overcrowding by switching between two distinct vegetative phenotypes, motile rods and immotile cocci. Growing colonies of the rod-shaped bacteria produce a toxic protein, Slf, which kills cells of encroaching sibling colonies. However, sublethal concentrations of Slf induce some of the rods to switch to Slf-resistant cocci, which have distinct metabolic and resistance profiles, including resistance to cell wall antibiotics. Unlike dormant spores of P. dendritiformis, the cocci replicate. If cocci encounter conditions that favor rods, they secrete a signaling molecule that induces a switch to rods. Thus, in contrast to persister cells, P. dendritiformis bacteria adapt to changing environmental conditions by inducible and reversible phenotypic switching. IMPORTANCE: In favorable environments, species may face space and nutrient limits due to overcrowding. Bacteria provide an excellent model for analyzing principles underlying overcrowding and regulation of density in nature, since their population dynamics can be easily and accurately assessed under controlled conditions. We describe a newly discovered mechanism for survival of a bacterial population during overcrowding. When competing with sibling colonies, Paenibacillus dendritiformis produces a lethal protein (Slf) that kills cells at the interface of encroaching colonies. Slf also induces a small proportion of the cells to switch from motile, rod-shaped cells to nonmotile, Slf-resistant, vegetative cocci. When crowding is reduced and nutrients are no longer limiting, the bacteria produce a signal that induces cocci to switch back to motile rods, allowing the population to spread. Genes encoding components of this phenotypic switching pathway are widespread among bacterial species, suggesting that this survival mechanism is not unique to P. dendritiformis.
Wyckoff EE, Payne SM. The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand. Mol Microbiol. 2011;81 (6) :1446-58.Abstract
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron. It transports the catechol siderophores vibriobactin, which it synthesizes and secretes, and enterobactin. These siderophores are transported across the inner membrane by one of two periplasmic binding protein-dependent ABC transporters, VctPDGC or ViuPDGC. We show here that one of these inner membrane transport systems, VctPDGC, also promotes iron acquisition in the absence of siderophores. Plasmids carrying the vctPDGC genes stimulated growth in both rich and minimal media of a Shigella flexneri mutant that produces no siderophores. vctPDGC also stimulated the growth of an Escherichia coli enterobactin biosynthetic mutant in low iron medium, and this effect did not require feoB, tonB or aroB. A tyrosine to phenylalanine substitution in the periplasmic binding protein VctP did not alter enterobactin transport, but eliminated growth stimulation in the absence of a siderophore. These data suggest that the VctPDGC system has the capacity to transport both catechol siderophores and a siderophore-free iron ligand. We also show that VctPDGC is the previously unidentified siderophore-independent iron transporter in V. cholerae, and this appears to complete the list of iron transport systems in V. cholerae.