Publications

2005
Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect Immun. 73 (12) :8167-78.Abstract
Regulation of iron uptake and utilization is critical for bacterial growth and for prevention of iron toxicity. In many bacterial species, this regulation depends on the iron-responsive master regulator Fur. In this study we report the effects of iron and Fur on gene expression in Vibrio cholerae. We show that Fur has both positive and negative regulatory functions, and we demonstrate Fur-independent regulation of gene expression by iron. Nearly all of the known iron acquisition genes were repressed by Fur under iron-replete conditions. In addition, genes for two newly identified iron transport systems, Feo and Fbp, were found to be negatively regulated by iron and Fur. Other genes identified in this study as being induced in low iron and in the fur mutant include those encoding superoxide dismutase (sodA), fumarate dehydratase (fumC), bacterioferritin (bfr), bacterioferritin-associated ferredoxin (bfd), and multiple genes of unknown function. Several genes encoding iron-containing proteins were repressed in low iron and in the fur mutant, possibly reflecting the need to reserve available iron for the most critical functions. Also repressed in the fur mutant, but independently of iron, were genes located in the V. cholerae pathogenicity island, encoding the toxin-coregulated pilus (TCP), and genes within the V. cholerae mega-integron. The fur mutant exhibited very weak autoagglutination, indicating a possible defect in expression or assembly of the TCP, a major virulence factor of V. cholerae. Consistent with this observation, the fur mutant competed poorly with its wild-type parental strain for colonization of the infant mouse gut.
Runyen-Janecky LJ, Boyle AM, Kizzee A, Liefer L, Payne SM. Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri. Infect Immun. 73 (3) :1404-10.Abstract
In response to the host cell environment, the intracellular pathogen Shigella flexneri induces the expression of numerous genes, including those in the pst operon which is predicted to encode a high-affinity phosphate acquisition system that is expressed under reduced phosphate conditions. An S. flexneri pst mutant forms smaller plaques in Henle cell monolayers than does the parental strain. This mutant exhibited normal production and localization of the S. flexneri IcsA protein. The pst mutant had the same growth rate as the parental strain in both phosphate-reduced and phosphate-replete media in vitro and during the first 3 h of growth in Henle cells in vivo. During growth in phosphate-replete media, the PhoB regulon was constitutively expressed in the pst mutant but not the parental strain. This suggested that the inability of the S. flexneri pst mutant to form wild-type plaques in Henle cell monolayers may be due to aberrant expression of the PhoB regulon. A mutation in phoB was constructed in the S. flexneri pst mutant, and the phoB mutation suppressed the small plaque phenotype of the pst mutant. Additionally, a specific mutation (R220Q) was constructed in the pstA gene of the pst operon that was predicted to eliminate Pst-mediated phosphate transport but allow normal PhoB-regulated gene expression, based on the phenotype of an Escherichia coli strain harboring the same mutation. Addition of this pstA(R220Q) mutation to a S. flexneri pst mutant, as part of the pst operon, restored normal plaque formation and regulation of phoA expression.
Wyckoff EE, Lopreato GF, Tipton KA, Payne SM. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol. 187 (16) :5658-64.Abstract
Shigella dysenteriae serotype 1, a major cause of bacillary dysentery in humans, can use heme as a source of iron. Genes for the transport of heme into the bacterial cell have been identified, but little is known about proteins that control the fate of the heme molecule after it has entered the cell. The shuS gene is located within the heme transport locus, downstream of the heme receptor gene shuA. ShuS is a heme binding protein, but its role in heme utilization is poorly understood. In this work, we report the construction of a chromosomal shuS mutant. The shuS mutant was defective in utilizing heme as an iron source. At low heme concentrations, the shuS mutant grew slowly and its growth was stimulated by either increasing the heme concentration or by providing extra copies of the heme receptor shuA on a plasmid. At intermediate heme concentrations, the growth of the shuS mutant was moderately impaired, and at high heme concentrations, shuS was required for growth on heme. The shuS mutant did not show increased sensitivity to hydrogen peroxide, even at high heme concentrations. ShuS was also required for optimal utilization of heme under microaerobic and anaerobic conditions. These data are consistent with the model in which ShuS binds heme in a soluble, nontoxic form and potentially transfers the heme from the transport proteins in the membrane to either heme-containing or heme-degrading proteins. ShuS did not appear to store heme for future use.
2004
Wyckoff EE, Schmitt M, Wilks A, Payne SM. HutZ is required for efficient heme utilization in Vibrio cholerae. J Bacteriol. 186 (13) :4142-51.Abstract
Vibrio cholerae, the causative agent of cholera, requires iron for growth. One mechanism by which it acquires iron is the uptake of heme, and several heme utilization genes have been identified in V. cholerae. These include three distinct outer membrane receptors, two TonB systems, and an apparent ABC transporter to transfer heme across the inner membrane. However, little is known about the fate of the heme after it enters the cell. In this report we show that a novel heme utilization protein, HutZ, is required for optimal heme utilization. hutZ (open reading frame [ORF] VCA0907) is encoded with two other genes, hutW (ORF VCA0909) and hutX (ORF VCA0908), in an operon divergently transcribed from the tonB1 operon. A hutZ mutant grew poorly when heme was provided as the sole source of iron, and the poor growth was likely due to the failure to use heme efficiently as a source of iron, rather than to heme toxicity. Heme oxygenase mutants of both Corynebacterium diphtheriae and C. ulcerans fail to use heme as an iron source. When the hutWXZ genes were expressed in the heme oxygenase mutants, growth on heme was restored, and hutZ was required for this effect. Biochemical characterization indicated that HutZ binds heme with high efficiency; however, no heme oxygenase activity was detected for this protein. HutZ may act as a heme storage protein, and it may also function as a shuttle protein that increases the efficiency of heme trafficking from the membrane to heme-containing proteins.
2003
Mey AR, Payne SM. Analysis of residues determining specificity of Vibrio cholerae TonB1 for its receptors. J Bacteriol. 185 (4) :1195-207.Abstract
In gram-negative organisms, high-affinity transport of iron substrates requires energy transduction to specific outer membrane receptors by the TonB-ExbB-ExbD complex. Vibrio cholerae encodes two TonB proteins, one of which, TonB1, recognizes only a subset of V. cholerae TonB-dependent receptors and does not facilitate transport through Escherichia coli receptors. To investigate the receptor specificity exhibited by V. cholerae TonB1, chimeras were created between V. cholerae TonB1 and E. coli TonB. The activities of the chimeric TonB proteins in iron utilization assays demonstrated that the C-terminal one-third of either TonB confers the receptor specificities associated with the full-length TonB. Single-amino-acid substitutions near the C terminus of V. cholerae TonB1 were identified that allowed TonB1 to recognize E. coli receptors and at least one V. cholerae TonB2-dependent receptor. This indicates that the very C-terminal end of V. cholerae TonB1 determines receptor specificity. The regions of the TonB-dependent receptors involved in specificity for a particular TonB protein were investigated in experiments involving domain switching between V. cholerae and E. coli receptors exhibiting different TonB specificities. Switching the conserved TonB box heptapeptides at the N termini of these receptors did not alter their TonB specificities. However, replacing the amino acid immediately preceding the TonB box in E. coli receptors with an aromatic residue allowed these receptors to use V. cholerae TonB1. Further, site-directed mutagenesis of the TonB box -1 residue in a V. cholerae TonB2-dependent receptor demonstrated that a large hydrophobic amino acid in this position promotes recognition of V. cholerae TonB1. These data suggest that the TonB box -1 position controls productive interactions with V. cholerae TonB1.
Runyen-Janecky LJ, Reeves SA, Gonzales EG, Payne SM. Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect Immun. 71 (4) :1919-28.Abstract
Shigella flexneri possesses multiple iron acquisition systems, including proteins involved in the synthesis and uptake of siderophores and the Feo system for ferrous iron utilization. We identified an additional S. flexneri putative iron transport gene, sitA, in a screen for S. flexneri genes that are induced in the eukaryotic intracellular environment. sitA was present in all Shigella species and in most enteroinvasive Escherichia coli strains but not in any other E. coli isolates tested. The sit locus consists of four genes encoding a potential ABC transport system. The deduced amino acid sequence of the S. flexneri sit locus was homologous to the Salmonella enterica serovar Typhimurium Sit and Yersinia pestis Yfe systems, which mediate both manganese and iron transport. The S. flexneri sit promoter was repressed by either iron or manganese, and the iron repression was partially dependent upon Fur. A sitA::cam mutation was constructed in S. flexneri. The sitA mutant showed reduced growth, relative to the wild type, in Luria broth containing an iron chelator but formed wild-type plaques on Henle cell monolayers, indicating that the sitA mutant was able to acquire iron and/or manganese in the host cell. However, mutants defective in two of these iron acquisition systems (sitA iucD, sitA feoB, and feoB iucD) formed slightly smaller plaques on Henle cell monolayers. A strain carrying mutations in sitA, feoB, and iucD did not form plaques on Henle cell monolayers.
Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, Mayhew GF, Plunkett G, Rose DJ, Darling A, et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun. 71 (5) :2775-86.Abstract
We determined the complete genome sequence of Shigella flexneri serotype 2a strain 2457T (4,599,354 bp). Shigella species cause >1 million deaths per year from dysentery and diarrhea and have a lifestyle that is markedly different from those of closely related bacteria, including Escherichia coli. The genome exhibits the backbone and island mosaic structure of E. coli pathogens, albeit with much less horizontally transferred DNA and lacking 357 genes present in E. coli. The strain is distinctive in its large complement of insertion sequences, with several genomic rearrangements mediated by insertion sequences, 12 cryptic prophages, 372 pseudogenes, and 195 S. flexneri-specific genes. The 2457T genome was also compared with that of a recently sequenced S. flexneri 2a strain, 301. Our data are consistent with Shigella being phylogenetically indistinguishable from E. coli. The S. flexneri-specific regions contain many genes that could encode proteins with roles in virulence. Analysis of these will reveal the genetic basis for aspects of this pathogenic organism's distinctive lifestyle that have yet to be explained.
2002
Runyen-Janecky LJ, Payne SM. Identification of chromosomal Shigella flexneri genes induced by the eukaryotic intracellular environment. Infect Immun. 70 (8) :4379-88.Abstract
Upon entry into the eukaryotic cytosol, the facultative intracellular bacterium Shigella flexneri is exposed to an environment that may necessitate the expression of particular genes for it to survive and grow intracellularly. To identify genes that are induced in response to the intracellular environment, we screened a library containing fragments of the S. flexneri chromosome fused to a promoterless green fluorescent protein gene (gfp). Bacteria containing promoter fusions that had a higher level of gfp expression when S. flexneri was intracellular (in Henle cells) than when S. flexneri was extracellular (in Luria-Bertani broth) were isolated by using fluorescence-activated cell sorting. Nine different genes with increased expression in Henle cells were identified. Several genes (uhpT, bioA, and lysA) were involved in metabolic processes. The uhpT gene, which encoded a sugar phosphate transporter, was the most frequently isolated gene and was induced by glucose-6-phosphate in vitro. Two of the intracellularly induced genes (pstS and phoA) encode proteins involved in phosphate acquisition and were induced by phosphate limitation in vitro. Additionally, three iron-regulated genes (sufA, sitA, and fhuA) were identified. The sufA promoter was derepressed in iron-limiting media and was also induced by oxidative stress. To determine whether intracellularly induced genes are required for survival or growth in the intracellular environment, we constructed mutations in the S. flexneri uhpT and pstS genes by allelic exchange. The uhpT mutant could not use glucose-6-phosphate as a sole carbon source in vitro but exhibited normal plaque formation on Henle cell monolayers. The pstS mutant had no apparent growth defect in low-phosphate media in vitro but formed smaller plaques on Henle cell monolayers than the parent strain. Both mutants were as effective as the parent strain in inducing apoptosis in a macrophage cell line.
Mey AR, Wyckoff EE, Oglesby AG, Rab E, Taylor RK, Payne SM. Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect Immun. 70 (7) :3419-26.Abstract
The gram-negative enteric pathogen Vibrio cholerae requires iron for growth. V. cholerae has multiple iron acquisition systems, including utilization of heme and hemoglobin, synthesis and transport of the catechol siderophore vibriobactin, and transport of several siderophores that it does not itself make. One siderophore that V. cholerae transports, but does not make, is enterobactin. Enterobactin transport requires TonB and is independent of the vibriobactin receptor ViuA. In this study, two candidate enterobactin receptor genes, irgA (VC0475) and vctA (VCA0232), were identified by analysis of the V. cholerae genomic sequence. A single mutation in either of these genes did not significantly impair enterobactin utilization, but a strain defective in both genes did not use enterobactin. When either irgA or vctA was supplied on a plasmid, the ability of the irgA vctA double mutant to use enterobactin was restored. This indicates that both VctA and IrgA transport enterobactin. We also identify the genes vctPDGC, which are linked to vctA and encode a periplasmic binding protein-dependent ABC transport system that functions in the utilization of both enterobactin and vibriobactin (VCA0227-0230). An irgA::TnphoA mutant strain, MBG40, was shown in a previous study to be highly attenuated and to have a strong colonization defect in an infant mouse model of V. cholerae infection (M. B. Goldberg, V. J. DiRita, and S. B. Calderwood, Infect. Immun. 58:55-60, 1990). In this work, a new irgA mutation was constructed, and this mutant strain was not significantly impaired in its ability to compete with the parental strain in infant mice and was not attenuated for virulence in an assay of 50% lethal dose. These data indicate that the virulence defect in MBG40 is not due to the loss of irgA function and that irgA is unlikely to be an important virulence factor.
Purdy GE, Hong M, Payne SM. Shigella flexneri DegP facilitates IcsA surface expression and is required for efficient intercellular spread. Infect Immun. 70 (11) :6355-64.Abstract
A degP mutant of Shigella flexneri was identified in a screen for insertion mutants that invaded cultured cells but did not form wild-type plaques in monolayers. The degP mutant SM1100 invaded Henle cells at wild-type levels and induced apoptosis in macrophages but formed smaller plaques than those formed by wild-type S. flexneri in confluent monolayers of Henle and Caco-2 cells. The proportion of SM1100 bacteria with IcsA localized to the bacterial pole, a process required for actin polymerization into actin "tails," was reduced compared to results with wild-type bacteria. The reduction in proper IcsA localization may account for the reduced plaque size of the degP mutant. Although DegP is a protease, the protease activity of S. flexneri DegP was not required for IcsA localization or the formation of plaques in Henle cell monolayers. DegP was also required for efficient polar IcsA localization in E. coli expressing icsA. In addition, the growth or survival of SM1100 was compromised compared to that of the wild type at elevated temperatures and in acidic conditions.
Bose N, Payne SM, Taylor RK. Type 4 pilus biogenesis and type II-mediated protein secretion by Vibrio cholerae occur independently of the TonB-facilitated proton motive force. J Bacteriol. 184 (8) :2305-9.Abstract
In Vibrio cholerae, elaboration of toxin-coregulated pilus and protein secretion by the extracellular protein secretion apparatus occurred in the absence of both TonB systems. In contrast, the cognate putative ATPases were required for each process and could not substitute for each other.
2001
Seliger SS, Mey AR, Valle AM, Payne SM. The two TonB systems of Vibrio cholerae: redundant and specific functions. Mol Microbiol. 39 (3) :801-12.Abstract
The two TonB systems in Vibrio cholerae were found to have unique as well as common functions. Both systems can mediate transport of haemin and the siderophores vibriobactin and ferrichrome. However, TonB1 specifically mediates utilization of the siderophore schizokinen, whereas TonB2 is required for utilization of enterobactin by V. cholerae. Although either TonB system was sufficient for the use of haemin as an iron source, in vitro competition between TonB1 and TonB2 system mutants indicates a preferential role for TonB1 in haemin utilization. This was most pronounced in conditions of high osmolarity, in which TonB1 system mutants were unable to grow with haemin as the sole iron source. Sequence analysis predicted that the two TonB proteins differ in both amino acid sequence and protein size. An internal deletion in TonB1 was constructed in order to generate a protein of approximately the same size as TonB2. A strain expressing the TonB1 deletion protein, and no other TonB, used haemin as the iron source in low-osmolarity medium, but could not use haemin in high osmolarity. This is the same phenotype as a strain expressing only TonB2 and suggests that TonB1, but not TonB2, can span the increased periplasmic space in high osmolarity and thus mediate haemin transport. Mouse colonization assays indicated a role for both TonB systems, and mutations in either system resulted in reduced ability to compete with the wild type in vivo.
Wyckoff EE, Smith SL, Payne SM. VibD and VibH are required for late steps in vibriobactin biosynthesis in Vibrio cholerae. J Bacteriol. 183 (5) :1830-4.Abstract
Vibrio cholerae synthesizes the catechol siderophore vibriobactin. In this report, we present the complete map of a vibriobactin gene region containing two previously unreported vibriobactin biosynthetic genes. vibD encodes a phosphopantetheinyl transferase, and vibH encodes a novel nonribosomal peptide synthase. Both VibD and VibH are required for vibriobactin biosynthesis.
Mogull SA, Runyen-Janecky LJ, Hong M, Payne SM. dksA is required for intercellular spread of Shigella flexneri via an RpoS-independent mechanism. Infect Immun. 69 (9) :5742-51.Abstract
Pathogenesis of Shigella flexneri is dependent on the ability of the bacterium to invade and spread within epithelial cells. In this study, we identified dksA as a gene necessary for intercellular spread in, but not invasion of, cultured cells. The S. flexneri dksA mutant exhibited sensitivity to acid and oxidative stress, in part due to an effect of DksA on production of RpoS. However, an S. flexneri rpoS mutant formed plaques on tissue culture monolayers, thus excluding DksA regulation of RpoS as the mechanism responsible for the inability of the dksA mutant to spread intercellularly. Intracellular analysis of the dksA mutant indicates that it survived and divided within the Henle cell cytoplasm, but the dksA mutant cells were elongated, and some exhibited filamentation in the intracellular environment. Some of the S. flexneri dksA mutant cells showed aberrant localization of virulence protein IcsA, which may inhibit spread between epithelial cells.
Mey AR, Payne SM. Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Mol Microbiol. 42 (3) :835-49.Abstract
Vibrio cholerae has multiple iron transport systems, one of which involves haem uptake through the outer membrane receptor HutA. A hutA mutant had only a slight defect in growth using haemin as the iron source, and we show here that V. cholerae encodes two additional TonB-dependent haem receptors, HutR and HasR. HutR has significant homology to HutA as well as to other outer membrane haem receptors. Membrane fractionation confirmed that HutR is present in the outer membrane. The hutR gene was co-transcribed with the upstream gene ptrB, and expression from the ptrB promoter was negatively regulated by iron. A hutA, hutR mutant was significantly impaired, but not completely defective, in the ability to use haemin as the sole iron source. HasR is most similar to the haemophore-utilizing haem receptors from Pseudomonas aeruginosa and Serratia marcescens. A mutant defective in all three haem receptors was unable to use haemin as an iron source. HutA and HutR functioned with either V. cholerae TonB1 or TonB2, but haemin transport through either receptor was more efficient in strains carrying the tonB1 system genes. In contrast, haemin uptake through HasR was TonB2 dependent. Efficient utilization of haemoglobin as an iron source required HutA and TonB1. The triple haem receptor mutant exhibited no defect in its ability to compete with its Vib- parental strain in an infant mouse model of infection, indicating that additional iron sources are present in vivo. V. cholerae used haem derived from marine invertebrate haemoglobins, suggesting that haem may be available to V. cholerae growing in the marine environment.
Purdy GE, Payne SM. The SHI-3 iron transport island of Shigella boydii 0-1392 carries the genes for aerobactin synthesis and transport. J Bacteriol. 183 (14) :4176-82.Abstract
In Shigella boydii 0-1392, genes encoding the synthesis and transport of the hydroxamate siderophore aerobactin are located within a 21-kb iron transport island between lysU and the pheU tRNA gene. DNA sequence analysis of the S. boydii 0-1392 island, designated SHI-3 for Shigella island 3, revealed a conserved aerobactin operon associated with a P4 prophage-like integrase gene and numerous insertion sequences (IS). SHI-3 is present at the pheU tRNA locus in some S. boydii isolates but not in others. The map locations of the aerobactin genes vary among closely related species. The association of the aerobactin operon with phage genes and mobile elements and its presence at different locations within the genomes of enteric pathogens suggest that these virulence-enhancing genes may have been acquired by bacteriophage integration or IS element-mediated transposition. An S. boydii aerobactin synthesis mutant, 0-1392 iucB, was constructed and was similar to the wild type in tissue culture assays of invasion and intercellular spread.
Torres AG, Redford P, Welch RA, Payne SM. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun. 69 (10) :6179-85.Abstract
The uropathogenic Escherichia coli strain CFT073 has multiple iron acquisition systems, including heme and siderophore transporters. A tonB mutant derivative of CFT073 failed to use heme as an iron source or to utilize the siderophores enterobactin and aerobactin, indicating that transport of these compounds in CFT073 is TonB dependent. The TonB(-) derivative showed reduced virulence in a mouse model of urinary tract infection. Virulence was restored when the tonB gene was introduced on a plasmid. To determine the importance of the individual TonB-dependent iron transport systems during urinary tract infections, mutants defective in each of the CFT073 high-affinity iron transport systems were constructed and tested in the mouse model. Mouse virulence assays indicated that mutants defective in a single iron transport system were able to infect the kidney when inoculated as a pure culture but were unable to efficiently compete with the wild-type strain in mixed infections. These results indicate a role for TonB-dependent systems in the virulence of uropathogenic E. coli strains.
2000
Reeves SA, Torres AG, Payne SM. TonB is required for intracellular growth and virulence of Shigella dysenteriae. Infect Immun. 68 (11) :6329-36.Abstract
To assess the importance of TonB-dependent iron transport systems to growth of Shigella in vivo, a tonB mutant of Shigella dysenteriae was isolated and tested in cultured cells. The tonB mutant invaded epithelial cells, but did not form plaques in confluent monolayers of Henle cells, indicating an inability of this mutant to spread from cell to cell. The rate of intracellular multiplication of the tonB mutant was reduced significantly compared to that of the wild type. The loss of virulence in the tonB mutant was not due to loss of either Shu or Ent, the TonB-dependent systems which allow for transport of heme and ferrienterobactin, respectively. A shuA mutant lacking the outer membrane receptor for heme, an entB mutant defective in enterobactin synthesis, and a shuA entB double mutant each were able to invade cultured cells, multiply intracellularly, and form wild-type plaques. The ability of S. dysenteriae to access iron during intracellular growth was assessed by flow cytometric analysis of an iron- and Fur-regulated shuA-gfp reporter construct. Low levels of green fluorescent protein expression in the intracellular environment were observed in all strains, indicating that iron is available to intracellular bacteria, even in the absence of TonB-dependent iron transport. The failure of the tonB mutant to grow well in an iron-replete intracellular environment suggests that TonB plays a role in addition to heme- and siderophore-mediated iron acquisition in vivo, and this function is required for the intracellular growth and intercellular spread of S. dysenteriae.
1999
Vokes SA, Reeves SA, Torres AG, Payne SM. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol. 33 (1) :63-73.Abstract
Genes encoding the synthesis and transport of aerobactin, a hydroxamate siderophore associated with increased virulence of enteric bacteria, were mapped within a pathogenicity island in Shigella flexneri. The island, designated SHI-2 for Shigella pathogenicity island 2, was located downstream of selC, the site of insertion of pathogenicity islands in several other enteric pathogens. DNA sequence analysis revealed the presence of multiple insertion sequences upstream and downstream of the aerobactin genes and an integrase gene that was nearly identical to an int gene found in Escherichia coli O157:H7. SHI-2 sequences adjacent to selC were similar to sequences at the junction between selC and pathogenicity islands found in E. coli O157:H7 and in enteropathogenic E. coli, but the junctions between the island and downstream yic genes were variable. SHI-2 also encoded immunity to the normally plasmid-encoded colicins I and V, suggesting a common origin for the aerobactin genes in both S. flexneri and E. coli pColV. Polymerase chain reaction and Southern hybridization data indicate that SHI-2 is present in the same location in Shigella sonnei, but the aerobactin genes are not located within SHI-2 in Shigella boydii or enteroinvasive E. coli. Shigella dysenteriae type 1 strains do not produce aerobactin but do contain sequences downstream of selC that are homologous to SHI-2. The presence of the aerobactin genes on plasmids in E. coli pColV and Salmonella, on a pathogenicity island in S. flexneri and S. sonnei and in a different chromosomal location in S. boydii and some E. coli suggests that these virulence-enhancing genes are mobile, and they may constitute an island within an island in S. flexneri.
O'Malley SM, Mouton SL, Occhino DA, Deanda MT, Rashidi JR, Fuson KL, Rashidi CE, Mora MY, Payne SM, Henderson DP. Comparison of the heme iron utilization systems of pathogenic Vibrios. J Bacteriol. 181 (11) :3594-8.Abstract
Vibrio alginolyticus, Vibrio fluvialis, and Vibrio parahaemolyticus utilized heme and hemoglobin as iron sources and contained chromosomal DNA similar to several Vibrio cholerae heme iron utilization genes. A V. parahaemolyticus gene that performed the function of V. cholerae hutA was isolated. A portion of the tonB1 locus of V. parahaemolyticus was sequenced and found to encode proteins similar in amino acid sequence to V. cholerae HutW, TonB1, and ExbB1. A recombinant plasmid containing the V. cholerae tonB1 and exbB1D1 genes complemented a V. alginolyticus heme utilization mutant. These data suggest that the heme iron utilization systems of the pathogenic vibrios tested, particularly V. parahaemolyticus and V. alginolyticus, are similar at the DNA level, the functional level, and, in the case of V. parahaemolyticus, the amino acid sequence or protein level to that of V. cholerae.

Pages